

National Aeronautics and Space Administration Goddard Earth Science Data Information and Services Center (GES DISC)

README Document for the Tropical Rainfall Measurement Mission (TRMM)

Last Revised December 8, 2015

Goddard Earth Sciences Data and Information Services Center (GES DISC) http://disc.gsfc.nasa.gov NASA Goddard Space Flight Center Code 610.2 Greenbelt, MD 20771 USA

Prepared By:

Kyle MacRitchie Collaborator's No	
Name	Name
GES DISC	Collaborator Address
GSFC Code 610.2	
8/31/2015	
Date	
	Reviewed By:
Reviewer Name	Date
Reviewer Name	Date
GES DISC	

GSFC Code 613.2

Goddard Space Flight Center Greenbelt, Maryland

Revision History

Revision Date	Changes	Author	
August 31, 2015	This document was first created.	Kyle MacRitchie	
December 8, 2015	Fixed some typos and missing information.	Kyle MacRitchie	

Table of Contents

1.0 Introduction	5
1.1 Dataset/Mission Instrument Description	5
1.1.1 Dataset/Instruments	7
1.2 Algorithm Background	8
1.3 Data Disclaimer	11
1.3.1 Acknowledgement	11
1.3.2 Contact Information	11
2.0 Data Organization	12
2.1 File Naming Convention	12
2.2 File Format and Structure	13
2.3 Key Science Data Fields	13
3.0 Data Contents	14
3.1 Dimensions	14
3.2 Global Attributes	15
3.3 Products and Variables	17
4.0 Options for Reading the Data	60
4.1 Command Line Utilities	60
4.1.1 GrADS	60
4.1.2 MATLAB	61
4.1.3 Python	63
4.1.4 hdp and ncdump	64
4.2 Tools/Programming	66
5.0 Data Services	68
6.0 More Information	68
7.0 Acknowledgements	69

1.0 Introduction

This document provides basic information for using Tropical Rainfall Measurement Mission (TRMM) products.

The TRMM datasets consist of products generated for studying precipitation in the tropics. These products include observations of radiances, microwave temperature, radar reflectivity, rainfall rate, vertical rainfall profile, and convective and stratiform heating.

TRMM was launched on November 27, 1997 and decommissioned on April 15, 2015. It reentered Earth's atmosphere in June 2015.

1.1 Dataset/Mission Instrument Description

Each of the TRMM datasets listed below is created using algorithms that are explained in more detail in section 1.2.

Applicable Data Products

Table 1 below provides an overview of the 18 TRMM products discussed in this document.

Product ID		Product Name	Temporal Resolution	Horizontal Resolution (x and y)
	1B01	Visible and Infrared Scanner (VIRS) Level 1 Raw	16 orbits / day	2.2 km
	1B11	and Calibrated Radiance Products TRMM Microwave Imager (TMI) Level 1 Raw and Calibrated Radiance Product		
	1B21	TRMM Precipitation Radar (PR) Level 1 Power and Reflectivity Products	16 orbits / day	4.3 km, 5.0 km
	1C21	TRMM Precipitation Radar (PR) Level 1 Power and Reflectivity Products	16 orbits / day	4.3 km, 5.0 km
Orbital	2A12	TRMM Microwave Imager (TMI) Level 2 Hydrometeor Profile Product	16 orbits / day	4.4 km, 5.1 km
Ō	2A21	TRMM Precipitation Radar (PR) Level 2 Surface Cross-Section Product	16 orbits / day	4.3 km, 5.0 km
	2A23	TRMM Precipitation Radar (PR) Level 2 Rain Characteristics Product	16 orbits / day	4.3 km, 5.0 km
	2A25	TRMM Precipitation Radar (PR) Level 2 Rainfall Rate and Profile Product	1 16 orbits / day 4.3 km, 5.0 k	
	2B31	TRMM Combined Precipitation Radar (PR) and TRMM Microwave Imager (TMI) Rainfall Profile Product	16 orbits / day	4.3 km, 5.0 km
	3A11	TRMM Microwave Imager (TMI) Gridded Oceanic Rainfall Product	Monthly	5.0°
	3A12	TRMM Microwave Imager (TMI) Level 3 Monthly 0.5 degree x 0.5 degree Profiling V7	Monthly	0.5°
	3A25	TRMM Precipitation Radar (PR) Gridded Rainfall Product	Monthly	0.5° and 5.0°
	3A26	TRMM Precipitation Radar (PR) Gridded Surface Rain Total Product	Monthly	5.0°
Gridded	3B31	TRMM Combined Precipitation Radar (PR) and TRMM Microwave Imager (TMI) Gridded Rainfall Product	Monthly	0.5°
	3A46	TRMM Monthly 1 x 1 Degree SSM/I Rain Data V2	Monthly	1.0°
	3B42	TRMM/TMPA 3-Hourly 0.25 deg. TRMM and Others Rainfall Estimate Data	3 hourly	0.25°
	3B43	TRMM/TMPA and Other Sources Monthly Rainfall Product	Monthly	0.25°
	CSH	TRMM Level 3 Monthly 0.5 degree x 0.5 degree Convective and Stratiform Heating CSH	Monthly	0.5°

Table 1. All horizontal resolutions are identical in the x and y directions (e.g. 2.2 km means 2.2 km x 2.2 km). Multiple resolutions refer to pre-boost (before 2001-08-07) and post-boost (after 2001-08-24) values respectively. Details on all these datasets can be found in Section 3.3.

1.1.1 Dataset/Instruments

The Tropical Rainfall Measurement Mission (TRMM) is a collaborative effort between NASA and the Japanese Aerospace Exploration Agency (JAXA). The TRMM observatory, which housed the first-ever precipitation radar in space, was launched in 1997 into a near circular orbit of approximately 350 kilometers with a period of 92.5 minutes (15.6 orbits per day). The datasets described in this document were created using data from the TRMM observatory and its partner satellites.

Multiple instruments are used throughout the TRMM satellite constellation. They are described briefly below.

Precipitation Radar (PR): The PR was the first spacebourne instrument designed to provide three-dimensional maps of storm structure. It has a horizontal resolution of about 5 km and a swath width of 247 km. It can provide vertical profiles of rain and snow from the surface to a height of 20 km and is sensitive to light rain rates as low as 0.7 mm/hr.

TRMM Microwave Imager (TMI): The TMI is a passive microwave sensor based on the Special Sensor Microwave/Imager (SSM/I). It measures the intensity of radiation at 10.7, 19.4, 21.3, 37, and 85.5 GHz.

Visible Infrared Scanner (VIRS): The VIRS senses radiation in the visible and infrared wavelengths of 0.63, 1.6, 10.8, and 12 micrometers. The VIRS has a horizontal resolution of 2 km and a swath width of about 833 km.

Below is a table summary of the instrument specifications adapted from the NASA Precipitation Measurement Missions website.

	PR	TMI	VIRS
Frequencies	13.8 GHz	Wavelengt 13.8 GHz 10.7, 19.4, 21.3, 37, 85.5 GHz 0.63, 1.6, 10.8,	
Resolution	5 km horizontal, 250 m vertical	11 km x 8 km at 37 GHz	2.5 km
Scanning	Cross-track	Conical	Cross-track
Swath Width	250 km	880 km	830 km

Table 2. Summary of instrument specifications.

1.2 Algorithm Background

This section describes how each dataset is created.

1B01: The TRMM Visible and Infrared Scanner (VIRS) Level 1B Calibrated Radiance Product contains calibrated radiances and auxiliary geolocation information from the five channels of the VIRS instrument for each pixel of each scan. The EOSDIS "swath" structure is used to accommodate the actual geophysical data arrays. Sixteen files of VIRS 1B01 data are produced each day.

For channels 1 and 2, Level 1B radiances are derived from the Level 1A (1A01) sensor counts by computing calibration parameters (gain and offset) derived from the counts registered during space and solar and/or lunar views. New calibration parameters are produced every one to four weeks. Channels 3, 4, and 5 are calibrated using the internal blackbody and the space view. These calibration parameters, together with a quadratic term determined pre-launch, are used to generate a counts vs. radiance curve for each band, which is then used to convert the earth-view pixel counts to spectral radiances.

Geolocation and channel data are written out for each pixel along the scan, whereas the time stamp, scan status (containing scan quality information), navigation, calibration coefficients, and solar/satellite geometry are specified on a per-scan basis. There are in general 18,026 scans along the orbit pre-boost and 18,223 post-boost, with each scan consisting of 261 pixels. The scan width is about 720 km pre-boost and 833 km post-boost.

1B11: This is the TRMM Microwave Imager (TMI) LEVEL 1B calibrated Brightness Temperature (T_b) data product. The TMI calibration algorithm (1B11) converts the radiometer counts to antenna temperatures by applying a linear relationship of the form $T_a = c_1 + c_2 \times count$. The coefficients are provided by the instrument contractor. Antenna temperatures are corrected for cross-polarization and spill over to produce brightness temperatures (T_b) , but no antenna beam pattern correction or sample to pixel averaging are performed. Temperatures are provided at 104 scan positions for the low frequency channels and 208 scan positions at 85 GHz. There are four samples per pixel (3 dB beam width) at 10 GHz, two samples at 19, 22, and 37 GHz, and one sample per pixel for the 85 GHz.

1B21: The PR calibration algorithm (1B21) converts the counts of radar echoes and noise levels into engineering values (power) and outputs the radar echo power and noise power separately. The algorithm also detects and flags the range bin with return power that exceeds a predetermined threshold value.

1C21: The PR reflectivity algorithm (1C21) converts the power and noise estimates from 1B21 to radar reflectivity factors (Z-factors). In order to reduce output data volume, only pixels with power that exceeds the minimum echo detected in 1B21 are converted and stored.

2A12: This product contains surface rainfall and vertical hydrometeor profiles on a pixel-by-pixel basis from the TMI brightness temperature data using the Goddard Profiling algorithm GPROF2008. Because the vertical information comes from a radiometer, it is not written in independent vertical layers like the TRMM PR. Instead, the output references the 100 typical structures for each hydrometeor or heating profile. These vertical structures are referenced as clusters in the output structure. Vertical hydrometeor profiles can be reconstructed to 28 layers by knowing the cluster number (i.e. shape) of the profile and a scale factor that is written for each pixel.

2A21: This is the sigma zero algorithm, which inputs the PR power (1B21) and computes estimates of the path attenuation and its reliability by using the surface as a reference target. It also computes the spatial and temporal statistics of the surface scattering cross section and classifies the cross sections into land/ocean and rain/no rain categories.

2A23: This dataset contains PR (13.8 GHz) precipitation characteristics at 4 km horizontal resolution over a 220 km swatch including rain/no-rain decision and freezing level.

2A25: The average rainfall rate between the two pre-defined altitudes is calculated for each beam position. Other output data include parameters of Z-R relationships, integrated rain rate of each beam, range bin numbers of rain layer boundaries, and many intermediate parameters.

2B31: This combined rainfall product is derived from vertical hydrometeor profiles using data from the PR radar and TMI. It also includes computed correlation-corrected, mass-weighted, mean drop diameter and its standard deviation, and latent heating.

3A11: This is the TMI Monthly 5° x 5° Oceanic Rainfall Product. Algorithm 3A11 estimates monthly rain from the histogram of the brightness temperatures obtained from TMI calibration (1B11). This histogram is matched to a log-normally distributed rain rate distribution via a rain rate-brightness temperature relation. A beam-filling correction is applied to account for the non-uniformly filled field-of-view of the TMI sensor. Outputs are monthly surface rain rates and freezing heights for 5° x 5° grid boxes.

3A12: This is a monthly version of the 2A12 data product.

3A25: This product consists of monthly statistics of the PR measurements at both a low (5° x 5°) and a high (0.5° x 0.5°) horizontal resolution. The low resolution grids are in the Planetary Grid 1 structure and include 1) mean and standard deviation of the rain rate, reflectivity, path-

integrated attenuation (PIA), storm height, Xi, bright band height and the NUBF (Non-Uniform Beam Filling) correction; 2) rain fractions; 3) histograms of the storm height, bright-band height, snow-ice layer, reflectivity, rain rate, path-attenuation and NUBF correction; 4) correlation coefficients. The high resolution grids are in the Planetary Grid 2 structure and contain mean rain rate along with standard deviation and rain fractions.

3A26: This dataset contains PR monthly surface rainfall. These data were derived from rain rate statistics and include the estimated values of the probability distribution function of the spacetime rain rates at four levels (2 km, 4 km, 6 km, and path-averaged) and the mean, standard deviation, and probability of rain derived from these distributions. Three different rain rate estimates are used as input to the algorithm: (1) the standard Z-R (or 0th-order estimate having no attenuation correction); (2) the Hitschfield-Bordan (H-B); and (3) the rain rates taken from 2A25.

3B31: This is a combined rainfall product. 3B31 uses the high quality retrievals done for the narrow swath in 2B31 to calibrate the wide swath retrievals generated in 2A12. For each 0.5° x 0.5° box and each vertical layer, an adjustment ratio is calculated for the swath overlap region for one month. Only TMI pixels with 2A12 pixelStatus equal to zero are included in monthly averages, which effectively removes sea ice.

3A46: This rainfall product contains data derived from the monthly SSM/I data averaged over 1° x 1° boxes each month. These data are used as input to the 3B43 monthly product described below.

3B42: This data product consists of TRMM-adjusted merged-infrared (IR) precipitation and root-mean-square (RMS) precipitation-error estimates. The algorithm consists of two separate steps. The first step uses the TRMM VIRS and TMI orbit data (TRMM products 1B01 and 2A12) and the monthly TMI/TRMM Combined Instrument (TCI) calibration parameters (from TRMM product 3B31) to produce monthly IR calibration parameters. The second step uses these derived monthly IR calibration parameters to adjust the merged-IR precipitation data, which consists of GMS, GOES-E, GOES-W, Meteosat-7, Meteosat-5, and NOAA-12 data. The final gridded, adjusted merged-IR precipitation and RMS precipitation-error estimates have a daily temporal resolution and a 0.25-degree by 0.25-degree spatial resolution. Spatial coverage extends from 50 degrees south to 50 degrees north latitude.

3B43: This product is comprised of the "Tropical Rainfall Measuring Mission (TRMM) and Other Data" best-estimate precipitation rate and root-mean-square (RMS) precipitation-error estimates. These gridded estimates are on a calendar month temporal resolution and a 0.25° by 0.25° spatial resolution global band extending from 50°S to 50°N latitude. This algorithm is executed once per calendar month to produce the single, best-estimate precipitation rate and

RMS precipitation-error estimate field (3B43) by combining the 3-hourly merged high-quality/IR estimates (3B42), SSM/I estimates (3A46), and the monthly accumulated Global Precipitation Climatology Centre (GPCC) rain gauge analysis (3A45).

CSH: This is the convective and stratiform heating product. Convective and stratiform heating profiles are separated by comparing heating profiles from TRMM sensors to a lookup table of heating profiles mostly generated by the Goddard Cumulus Ensemble Cloud Resolving Model.

1.3 Data Disclaimer

1.3.1 Acknowledgement

If you use these data in publications, please acknowledge the Tropical Rainfall Measuring Mission (TRMM) as well as the Goddard Earth Sciences Data and Information Services Center (GES DISC) for the dissemination of the data.

1.3.2 Contact Information

If you need assistance or wish to report a problem please use the following contact information:

Email: help-disc@listserv.gsfc.nasa.gov

Voice: 301-614-5268 Fax: 301-614-5268

Address:

Goddard Earth Sciences Data and Information Services Center (GES DISC) NASA Goddard Space Flight Center Code 610.2 Greenbelt, MD 20771 USA

2.0 Data Organization

All datasets are stored in files that correspond to their temporal resolution. For example, the 3-hourly 3B42 data are stored in eight files per day at 00 UTC, 03 UTC, 06 UTC, etc. and monthly files are stored in separate files for each month.

2.1 File Naming Convention

File names involve some combination of the following attributes:

- <date> The date is always in a format with the last 2 digits of the year following by the month and the day, always with a leading zero. An example for 4 August 2009 would be: 090804.
- <orbit_number> This is the 5 digit orbit number.
- <product_version> This is the product version. The most recent version is 7, but GES DISC still supports version 6. Some products, like 3B42 are labeled version 7A, but the GES DISC numbering scheme only uses "7" in the filenames.

Product ID	File Naming Convention	Format
1B01	1B01. <date>.<orbit_number>.<product_version>.HDF</product_version></orbit_number></date>	HDF4
1B11	1B11. <date>.<orbit_number>.<product_version>.HDF</product_version></orbit_number></date>	HDF4
1B21	1B21. <date>.<orbit_number>.<product_version>.HDF.Z</product_version></orbit_number></date>	Compressed HDF4
1C21	1C21. <date>.<orbit_number>.<product_version>.HDF.Z</product_version></orbit_number></date>	Compressed HDF4
2A12	2A12. <date>.<orbit_number>.<product_version>.HDF.Z</product_version></orbit_number></date>	Compressed HDF4
2A21	2A21. <date>.<orbit_number>.<product_version>.HDF.Z</product_version></orbit_number></date>	Compressed HDF4
2A23	2A23. <date>.<orbit_number>.<product_version>.HDF.Z</product_version></orbit_number></date>	Compressed HDF4
2A25	2A25. <date>.<orbit_number>.<product_version>.HDF.Z</product_version></orbit_number></date>	Compressed HDF4
2B31	2B31. <date>.<orbit_number>.<product_version>.HDF.Z</product_version></orbit_number></date>	Compressed HDF4
3A11	3A11. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
3A12	3A12. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
3A25	3A25. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
3A26	3A26. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
3B31	3B31. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
3A46	3A46. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
3B42	3B42. <date>.<hour>.<product_version>.HDF.Z</product_version></hour></date>	Compressed HDF4
3B43	3B43. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
CSH	CSH. <date>.<product_version>.HDF</product_version></date>	HDF4

Table 3. File naming conventions.

2.2 File Format and Structure

TRMM files are in the HDF-EOS format, which is an extension of the Hierarchical Data Format Version 4 (HDF-4), developed at the National Center for Supercomputing Applications (http://www.hdfgroup.org). These extensions facilitate the creation of Grid, Point, and Swath data structures, depending on whether the data are orbital or gridded.

Orbital (levels 1 and 2) data are stored in HDF-EOS files that use the swath structure.

The variables within the orbital TRMM files (the product IDs that begin with a "1" or a "2") contain Swath data structures with dimensions of (nscan x nray). The gridded variables have dimensions of (longitude x latitude). Three-dimensional variables, found in the gridded files, have a third dimension of height above the surface, measured in kilometers.

Missing data are represented by values that are less than or equal to -99, -9999, -9999, -9999.9, and -9999.9 corresponding to 1-byte integers, 2-byte integers, 4-byte floats, and 8-byte floats.

Array dimensions are ordered so that the first dimension has the most rapidly varying index and the last dimension has the least rapidly varying index, which is sometimes called column-major ordering. Languages such as Fortran, MATLAB, and R use column-major ordering naturally. If you use row-major languages such as C++ and Python, it is recommended that you reverse the order of the dimensions of the arrays for optimal performance.

2.3 Key Science Data Fields

Below are the variables, and the products in which they are found, that we expect to be the most popular.

Product ID	Variable Name	Description Dimens		Units
	surfaceRain	Surface Rainfall Rate lat x lon mm h		mm hr ⁻¹
	convectPreciptiation	Surface Convective Rain Rate	level x lat x lon	mm hr ⁻¹
	surfacePrecipitation	Surface Precipitation Rate	lat x lon	mm hr ⁻¹
3A12	cldlce	Cloud Ice Water Content	level x lat x lon	g m ⁻³
Monthly Data	cldWater	Cloud Liquid Water Content	level x lat x lon	g m ⁻³
	snow	Snow Liquid Content	level x lat x lon	g m ⁻³
	graupel	Graupel Liquid Water Content	level x lat x lon	g m ⁻³
	latentHeat	Latent Heat Release	level x lat x lon	K hr ⁻¹
	precipitation	Surface Precipitation Estimate	lat x lon	mm hr ⁻¹
3B42	HQprecipitation	Microwave Precipitation Estimate*	lat x lon	mm hr ⁻¹
3-Hourly Data	IRprecipitation	Infrared Precipitation Estimate* lat x lon		mm hr ⁻¹
	relativeError	Random Error Estimate	lat x lon	mm hr ⁻¹
3B43	precipitation	Surface Precipitation Estimate	lat x lon	mm hr ⁻¹
Monthly Data	relativeError	Random Error Estimate	lat x lon	mm hr ⁻¹

Table 4. Description of popular variables.

Variables marked with a * are only found in version 7, not version 6.

3.0 Data Contents

3.1 Dimensions

The dimensions of the variables within the files vary by processing level, which refers to the "1", "2", or "3" at the beginning of the product ID. A summary of the dimensionality of the most common variables is given below. See section 3.3 for more details on each individual dataset.

Level 1 Data: 1XXX

Most of these variables have dimensions of *nscan* x *nray*. *nscan* refers to the number of scans in each granule, which varies by file. The second dimension, *nray* refers to the number of angle bins in each scan, which is always 49.

Level 2 Data: 2XXX

These variables have various numbers of dimensions made up of the ones listed below.

ncluster: number of clusters at each freezing height, always 100

nlayer: number of profiling layers, always 28 npixel: number of pixels in each scan, always 208 nfindex: number of freezing height indices, always 13

nspecies: number corresponding to the hydrometeor species. Table 5 below lists the species.

Species Number	Description	Units
1	Cloud liquid water content	g m ⁻³
2	Rain water content	g m ⁻³
3	Cloud ice water content	g m ⁻³
4	Snow water content	g m ⁻³
5	Graupel water content	g m ⁻³
6	Latent heating	K h ⁻¹

Table 5. Description of hydrometeor species.

Level 3 Data: 3XXX

These variables are on geographic grids and have various combinations of the dimensions listed below.

nlat: number of latitudes *nlon*: number of longitudes

nlayer: number of vertical layers denoting the height above the surface. There are 28 vertical layers beginning at 0.5 km and increasing in 0.5 km intervals to 10 km and then 1 km intervals to 18 km.

All 32-bit variables have units attributes to make them COARDS-compliant.

Resolution

TRMM data are available on a variety of grids depending on the products chosen. Table 1 shows the temporal and horizontal resolutions associated with each TRMM product.

Temporal resolutions vary between 16 orbits/day (90 minutes), 3-hourly, and monthly. 3-hourly data exist at the synoptic and intermediate synoptic times of 00, 03, 06, 09, 12, 15, 18, and 21 UTC. Sub-daily data represent observations taken at that instant whereas monthly data represent monthly averages.

The orbital data products (1XXX and 2XXX) have latitude and longitude variables contained within the HDF files to allow proper swath mapping. Gridded files (3XXX) do not have explicit latitude and longitude information. Instead, the gridded files contain the *LatitudeResolution*, *LongitudeResolution*, *NorthBoundingCoordinate*, *SouthBoundingCoordinate*, *EastBoundingCoordinate*, *WestBoundingCoordinate* metadata and generally span 50°S to 50°N and 180°W to 180°E. Some products only span 38°S to 38°N, see section 3.3 for specific details.

Gridded TRMM products use the center of grid boxes for their latitude and longitude coordinates. For example, the TRMM 3B42 dataset, which spans 50°S to 50°N and 180°E to 180°W has a grid that goes from 49.875°S TO 49.875°N and 179.875°W to 179.875°W. Consult the sample code in Section 4 of this Readme for specific examples.

Detailed information on data resolution can be found in the <u>PPS File Specification document</u> cited at the end of this Readme document.

3.2 Global Attributes

In addition to SDS arrays containing variables and dimension scales, global metadata are also stored in the files. Some metadata are required by standard conventions, some are present to meet data provenance requirements, and others as a convenience to users of TRMM products. A summary of global attributes present in all files is shown in Table 6.

Global Attribute	Description
AlgorithmID	The algorithm that generated the product.
AlgorithmVersion	The version of the algorithm specified as the AlgorithmID.
FileName	The file name.
GenerationDateTime	The date and time the granule was generated.
StartGranuleDateTime	The start time of the data in the granule.
StopGranuleDateTime	The stop time of the data in the granule.
GranuleNumber	The granule number.
NumberOfSwaths The number of swaths in the granule.	
NumberOfGrids	The number of grid structures in the granule.
GranuleStart	The granule's orbit starting place.
TimeInterval	The time interval covered by the granule. Possible values are: ORBIT,
Tilleliitervai	HALFORBIT, HOUR, 3_HOUR, DAY, MONTH, and CONTACT.
ProcessingSystem	The name of the processing system.
ProductVersion	The data version assigned by ProcessingSystem.
MissingData	The number of missing scans.

 Table 6. Description of global attributes.

A list of key metadata fields can be found in Table 7. Global attributes in a **Data Set Name** file can be viewed with the ncdump software: ncdump - h - c < TRMM file>.

Name	Туре	Description	
FillValue	float32	Floating-point value used to identify missing	
		data. Will normally be set to	
		1e15. Not included in every TRMM file.	
Units	string	The units of the variable. Must be a string that	
		can be recognized by	
		UNIDATA's Udunits package.	
Scale_factor	float32	If variable is packed as 16-bit integers, this is the	
		scale_factor for	
		expanding to floating-point.	

Table 7. Key Metadata Items

3.3 Products and Variables

1B01: Visible and Infrared Radiance

	Pre-boost (before 7 Aug 2001)	Post-boost (after 24 Aug 2001)
Tomporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24
Temporal Coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08
Goographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day
Horizontal Resolution	2.2 km	2.4 km
	Swath Width: 720 km Swath Width: 833 km	
	Pixels/Scan: 261	Pixels/Scan: 261
Scan Characteristics	Scans/Second (SS): 2*98.5/60	
Scall characteristics	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5490
	Average Scans/Orbit: nscan = 18026	Average Scans/Orbit: 5550 = 18223
	nscan = SS*SO	nscan = SS*SO
Average File Size	≈ 137 MB	≈ 138 MB

1B01 Data Format Structure						
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-	-
ECS core metadata						
PS Metadata	Char Attribute	10,000	-	-	-	-
Product specific metad		F 000				
Swath Structure	Char Attribute	5,000	-	-	-	-
Specifications for the sv		_				
Scan Time	Vdata Table	8	nscan	-	-	-
Time associated with ea						
Latitude	Float SDS	4	261*nscan	-	-	degree
Latitude information						
Longitude	Float SDS	4	261*scan	-	-	degree
Longitude information						
Scan Status	Vdata Table	19	nscan	-	-	-
Status of each scan						
Navigation	Vdata Table	88	nscan	-	-	-
Spacecraft geocentric in	nformation					
Solar Cal	Vdata Table	32	nscan	-	-	-
Solar unit vector in Geo	centric Inertial Co	ordinates and	d the Sun-Earth dis	tance		
Calibration Counts	Integer SDS	2	5*2*3*nscan	-	-	-
Raw calibration counts data						
Temperature Counts	Integer SDS	2	6*nscan	-	0 – 4095	counts
Primary and redundant temperatures for the black body, radiant cooler, and the electronics module						
Local Direction	Float SDS	4	2*2*27*nscan	-	-	degree
Angles to the satellite and sun from the IFOV pixel position on the earth						
Channels	Float SDS	4	5*261*nscan	depends	depends	mW cm ⁻² μm ⁻¹ sr ⁻¹
Scene data for the five	channels					

Solar Unit Vector					
Name Format Description					
Solar Position	3 * 8-byte float	Sun Unit Vectors: x-, y-, and z-components			
Distance	8-byte float	Sun-Earth Distance (m)			

Raw Calibration Counts Data					
Dimension Data Stored					
1 Channel number					
2 Data word					
3	Blackbody, space view, solar diffuser				
4	Number of scans				

	Local Direction Angles				
Dimension	Dimension Data Stored Description				
1	zenith, azimuth	The zenith angle is measured between the local pixel geodetic zenith and the direction to the satellite. The azimuth angle is measure clockwise			
		from the local north direction toward the local east direction.			
2	object	The object to which the directions point, namely the satellite and the			
2 Object		sun.			
3	pixel number	Angles are given only for every tenth pixel along a scan: e.g. pixels 1, 11, 21,, 261.			
4	scan number	Scan line number			

	VIRS Range and Accuracy							
Channel	Minimum mW cm ⁻² μm ⁻¹ sr ⁻¹	Maximum mW cm ⁻² μm ⁻¹ sr ⁻¹	Accuracy	Spectral Region	Wavelength (µm)			
1	0	65.5	10%	Visible	0.63			
2	0	32.7	10%	Near IR	1.60			
3	0	0.111	2%	Near IR	3.75			
4	0	1.371	2%	Near IR	10.80			
5	0	1.15	2%	IR	12.00			

1B11: Microwave Brightness Temperature (TMI)

	Pre-boost (before 7 Aug 2001)	Post-boost (after 24 Aug 2001)	
Temporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24	
Temporal Coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08	
Coographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N	
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E	
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day	
Spatial Resolution	4.4 km at 85.5 GHz	5.1 km at 85.5 GHz	
	Swath Width: 760 km	Swath Width: 878 km	
	Pixels/Scan: 104 (low resolution)	Pixels/Scan: 104 (low resolution)	
	208 (high resolution)	208 (high resolution)	
Scan Characteristics	Scans/Second (SS): 36.100/60	Scans/Second (SS): 36.100/60	
	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550	
	Average Scans/Orbit: nscan = 2991	Average Scans/Orbit: nscan = 3023	
	nscan = SS * SO + 100	nscan = SS * SO + 100	
Average File Size	≈ 16 MB	≈ 16 MB	

1B11 Data Format Structure						
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-	-
ECS core metadata						
PS Metadata	Char Attribute	10,000	-	-	-	-
Product specific metadata						
Swath Structure	Char Attribute	5,000	-	-	-	-
Specification of the swath geo	metry					
Scan Time	Vdata Table	9	nscan	-	-	-
Time associated with each sca	n					
Latitude	Float SDS	4	208*nscan	-	-	degree
Latitude information						
Longitude	Float SDS	4	208*nscan	-	-	degree
Longitude information						
Scan Status	Vdata Table	21	nscan	-	-	-
Status of each scan						
Navigation	Vdata Table	88	nscan	-	_	-
Spacecraft geocentric informa	tion					
Calibration	Vdata Table	95	nscan	-	-	-
Calibration						
Calibration Counts	Integer SDS	2	16*2*9*nscan	-	-	-
Calibration measurement, in c	ounts. Dimensions	s are: samples, lo	ad, channel, and n	scan.		
Satellite Local Zenith Angle	Float SDS	4	12*nscan	-	-	degree
Angle between the local pixel	geodetic zenith an	d the direction t	o the satellite. This	angle is given for	or every 20) th high
resolution pixel along a scan: p						_
Low Resolution Channels	Integer SDS	2	7*104*nscan	(T-100)*100	-	K
Low resolution channels bright temperature						
High Resolution Channels	Integer SDS	2	2*208*nscan	(T-100)*100	-	K
High resolution channels brigh	t temperature					

TRMM 1B11 Scan Time					
Name	Format	Description			
Year	2-byte integer	4-digit year, e.g., 1998			
Month	Month 1-byte integer The month of the year				
Day of Month	1-byte integer	The day of the month			
Hour 1-byte integ		The hour (UTC) of the day			
Minute	1-byte integer	The minute of the hour			
Second	1-byte integer	The second of the minute			
Day of Year	2-byte integer	The day of the year			

	TRMM 1B11 Channels						
Channel	Channel Frequency Polarization Reso						
1	10 GHz	Vertical	Low				
2	10 GHz	Horizontal	Low				
3	19 GHz	Vertical	Low				
4	19 GHz	Horizontal	Low				
5	21 GHz	Vertical	Low				
6	37 GHz	Vertical	Low				
7	37 GHz	Horizontal	Low				
8	85 GHz	Vertical	High				
9	85 GHz	Horizontal	High				

TRMM 1B11 Calibration					
Name Format Range					
Hot Load Temperature	3 x 2-byte integer	0 – 400 K			
-					

The physical temperatures, in degrees Kelvin, for the 3 temperature sensors attached to the hot load. This temperature is reduced by 80 K, multiplied by 100, and stored in the file as a 2-byte integer. Stored value = (T - 80) * 100.

Hot Load Bridge 2-byte integer 0 – 4095

The positive bridge voltage of the hot load bridge reference.

Hot Load Bridge Reference near Zero

Voltage

2-byte integer

4 - 4095

The near zero voltage of the hot load bridge reference.

85.5 GHz Receiver Temperature 2-byte integer -273.15 – 126.85°C

The receiver shelf temperature of the 85.5 GHz channel. This temperature is increased by 200, multiplied by 100, and stored in the file as a 2-byte integer.

Top Radiator Temperature 2-byte integer -273.15 – 126.85°C

The temperature of the top of the radiator channel. This temperature is increased by 200, multiplied by 100, and stored in the file as a 2-byte integer.

Automatic Gain Control 9×1 -byte integer 0-15

Automatic gain control for the 9 channels in counts.

Calibration Coefficient A

Calibration coefficient A (degrees Kelvin / counts) for the 9 channels. Coefficient A for each channel is used in the following equation to convert counts, C, to antenna temperature, T_A : $T_A = A*C + B$

Calibration Coefficient B

Calibration coefficient B (degrees Kelvin) for the 9 channels. Coefficient B for each channel is used in the following equation to convert counts, C, to antenna temperature, T_A : $T_A = A*C + B$

1B21: Precipitation Radar Power

	Pre-boost (before 7 Aug 2001)	Post-boost (after 24 Aug 2001)	
Temporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24	
Temporal Coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08	
Goographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N	
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E	
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day	
Horizontal Resolution	4.3 km	5.0 km	
	Swath Width: 215 km	Swath Width: 247 km	
	Rays/Scan: nray = 49	Rays/Scan: nray = 49	
Scan Characteristics	Scans/Second (SS): 1/0.6	Scans/Second (SS): 1/0.6	
Scall Characteristics	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550	
	Average Scans/Orbit: nscan = 9150	Average Scans/Orbit: nscan = 9250	
	nscan = SS*SO	nscan = SS*SO	
Average File Size	≈ 67 MB	≈ 79 MB	

	1B21	Data Format St	ucture: Part 1			
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-	-
ECS core metadata						
PS Metadata	Char Attribute	10,000	-	-	-	-
Product specific metadata						
PR Cal Coef	Vdata Table	4	18	-	-	-
Calibration coefficients for the coefficient (unitless, 1 record),			•		•	
Ray Header	Vdata Table	60	49	-	-	-
Information about each ray (ar	ngle bin) that is cor	nstant for every s	can. The record nu	mber represents	the angle bir	number
Each record describes one ray	and is defined in R	ay Header Table.				
Swath Structure	Char Attribute	5,000	-	-	-	-
Specification of the swath geo	metry					
Scan Time	Vdata Table	8	nscan	-	-	-
Time associated with the scan,	expressed as 8-by	te float UTC seco	nd of the day.			
Latitude	Float SDS	4	nray*nscan	-	-	degree
Latitude information						
Longitude	Float SDS	4	nray*nscan	-	-	degree
Longitude information						
Scan Status	Vdata Table	15	nscan	-	-	-
Status of each scan						
Navigation	Vdata Table	88	nscan	-	-	-
Spacecraft geocentric informa	tion					
Powers	Vdata Table	6	nscan	-	-	-
Radar transmission power and	transmitted pulse	width				
System Noise	Integer SDS	2	nray*nscan	100	-120 ~ -20	dBm
System Noise (dBm) is an aver	age of the 4 measu	red system noise	values. Missing da	ta are given the	value of -32,7	734.
System Noise Warning Flag	Integer SDS	1	nray*nscan	-	-	-
System Noise Warning Flag inc	licates possible cor	ntamination of lo	wer window noise	by high towers o	of rain. 1 mea	ns
possible contamination; 0 mea	•					

	1B21	Data Format Str	ucture: Part 2		1B21 Data Format Structure: Part 2						
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit					
Minimum Echo Flag	Integer SDS	1	nray*nscan	-	-	-					
Minimum echo flag indicates th	e presence of rain	in the ray (angle									
Bin Storm Height	Integer SDS	2	2*nray*nscan	-	-	-					
Bin storm height is the range bi		torm top.									
Satellite Local Zenith Angle	Float SDS	4	nray*nscan	-	-	-					
Angle, in degrees, between the		ne beam's center	r line. The local (geo	odetic) zenith at	the intersect	ion of the					
ray and the earth ellipsoid is us											
Spacecraft Range	Integer SDS	4	nray*nscan	-	-	m					
Distance between the spacecra	ft and the center o	of the footprint o	of the beam on the	earth ellipsoid.							
Bin Start of Oversample	Integer SDS	2	2*29*nscan	-	-	-					
Starting range bin number of th	e oversample (eit	her surface or ra	in) data, counting f	rom the top dov	vn.						
Land/Ocean Flag	Integer SDS	2	nray*nscan	-	-	-					
Land or ocean information. The	values of the flag	are: 0 = water, 1	. = land, 2 = coast, 3	B = water (w/ lar	ge attenuatio	n), 4 =					
land/coast (w/ large attenuatio	n).										
Surface Detect Warning Flag	Integer SDS	2	nray*nscan	-	-	-					
Definition TBD by NASDA.											
Bin Surface Peak	Integer SDS	2	nray*nscan	-	-	-					
Range bin number of the peak s	surface echo. This	peak is determir	ed by the post obs	ervation ground	processing, r	not by the					
on board surface detection. The	e range bin numbe	er is defined in th	is volume in the se	ction on Precipit	ation Radar,						
Instrument and Scan Geometry											
Bin Ellipsoid	Float SDS	2	nray*nscan	-	-	-					
Range bin number of the earth	ellipsoid.										
Bin Clutter Free Bottom	Integer SDS	2	2*nray*nscan	-	-	-					
Range bin number of the lowes	t clutter free bin. (Clutter free bin n	umbers are given f	or clutter free co	ertain and po	ssible,					
respectively. The clutter free ce	rtain bin is always	less than or equ	al to the clutter fre	e possible bin n	umber.						
Bin DID Average	Integer SDS	2	nray*nscan	-	-	-					
Mean range bin number of the	DID surface elevat	ion in a 5 km x 5	km box centered o	n the IFOV.							
Bin DID Top	Integer SDS	2	2*nray*nscan	-	-	-					
Range bin number of the maxin	num DID surface e	levation in a box	•	OV. The first din	nension is the	box size,					
with sizes of 5 km x 5 km and 1:						,					
Bin DID Bottom	Integer SDS	2	2*nray*nscan	-	-	-					
Range bin number of the minim	_	evation in a box		OV. The first dim	nension is the	box size,					
with sizes of 5 km x 5 km and 1:											
Normal Sample	Integer SDS	2	140*nray*nscan	100	-120 ~ -20	dBm					
Return power (dBm) of the nor	•		•								
filled with a value of -32767. Ot	•	•	·			•					
including an entire scan of miss					-						
accuracy of 0.9 dBm.	,				,						
Surface Oversample	Integer SDS	2	5*29*nscan	100	-120 ~ -20	dBm					
Return power (dBm) of the surf	ace echo oversam	ple for the centr	al 29 rays (rays #11	39), with an acc	curacy of 0.9	dBm. Bins					
where data is not written due t	o a transmission, o	calibration, or otl	her problem, includ	ling an entire sca	an of missing	bins,					
have the value of -32734. In the		nsion, Offset = -1	0 and Increment =	1.							
Rain Oversample	Integer SDS	2	28*11*nscan	100	-120 ~ -20	dBm					
Return power (dBm) of the rain	echo oversample	for the central 1	1 rays (rays #20-30), with an accura	acy of 0.9 dBr	n. Bins					
where data is not written due t					an of missing	bins,					
have the value of -32734. In the	CrossTrack dimer	nsion, Offset = -1	9 and Increment =	1.							

PR Powers				
Name	Format			
Radar Transmission Power	2-byte integer			
Total (sum) power of 128 SSPA	elements corrected with SSPA temperature in orbit, based on temperature test data of			
SSPA transmission power. The units are dBm * 100. For this variable, the TSDIS Toolkit does not provide scaling.				
Transmitted Pulse Width	4-byte float			
Transmitted pulse width (s) con	rected with FCIF temperature in orbit, based on temperature test data of FCIF.			

	Minimum Echo Flag				
Value	Mean				
0	No Rain				
10	Rain Possible				
11	Rain Possible (echo greater than rain threshold #1 in clutter range)				
12	Rain Possible (echo greater than rain threshold #2 in clutter range)				
20	Rain Certain				

1B21 Bin Storm Height Description

Bin Storm Height is Range Bin Number of the storm top. The first dimension is threshold, with values of possible rain threshold and certain rain threshold in that order. The Bin Storm Heights are generated in the procedure to determine the Minimum Echo Flag. The Bin Storm Height is the top range bin of the portion of consecutive range bins that flagged the ray as rain possible or rain certain. The range bin number is defined in this volume in the section on Precipitation Radar, Instrument and Scan Geometry.

1B21 Bin Start of Oversample Description

The first dimension is the Bin Start of Oversample and Surface Tracker Status. The second dimension is the ray. The number of rays is 29 because this information only applies to the rays that have oversample data (rays #11 to #39). The third dimension is the scan. The Surface Tracker Status has the value of 0 (Lock) or 1 (Unlock), where Lock means that (1) the on board surface detection detected the surface and (2) the surface detected later by processing on the ground fell within the oversample bins. Unlock means that Lock was not achieved. The range bin number is defined in this volume in the section on Precipitation Radar, Instrument and Scan Geometry.

1C21: Precipitation Radar Reflectivity

Temporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24	
Telliporal Coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08	
Geographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N	
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E	
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day	
Horizontal Resolution	4.3 km	5.0 km	
	Swath Width: 215 km	Swath Width: 247 km	
	Rays/Scan: nray = 49	Rays/Scan: nray = 49	
Scan Characteristics	Scans/Second (SS): 1/0.6	Scans/Second (SS): 1/0.6	
Scall Characteristics	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550	
	Average Scans/Orbit: nscan = 9150	Average Scans/Orbit: nscan = 9250	
	nscan = SS*SO	nscan = SS*SO	
Average File Size	≈ 44 MB	≈ 44 MB	

1C21 Data Format Structure: Part 1							
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit	
ECS Core Metadata	Char Attribute	10,000	-	-	-	-	
ECS core metadata							
PS Metadata	Char Attribute	10,000	-	-	-	-	
Product specific metadata							
PR Cal Coef	Vdata Table	4	18	-	-	-	
Calibration coefficients for the I coefficient (unitless, 1 record), a			· · · · · · · · · · · · · · · · · · ·	·	•		
	Vdata Table	60	49	criptions are 16	D DY NASDA.		
Ray Header				-	- the engle him	-	
Information about each ray (ang Each record describes one ray a	•	•	can. The record hur	mber represents	the angle bir	i number.	
Swath Structure	Char Attribute	5,000	_	-	_	-	
Specification of the swath geom		3,000					
Scan Time	Vdata Table	8	nscan	-	-	-	
Time associated with the scan,	expressed as 8-byt	e float UTC seco	nd of the day.				
Latitude	Float SDS	4	nray*nscan	-	-	degree	
Latitude information							
Longitude	Float SDS	4	nray*nscan	-	-	degree	
Longitude information							
Scan Status	Vdata Table	15	nscan	-	-	-	
Status of each scan							
Navigation	Vdata Table	88	nscan	-	-	-	
Spacecraft geocentric informati	on						
Powers	Vdata Table	6	nscan	-	-	-	
Radar transmission power and transmitted pulse width							
System Noise	Integer SDS	2	nray*nscan	100	-120 ~ -20	dBm	
System Noise (dBm) is an avera	ge of the 4 measu	red system noise	values. Missing da	ta are given the	value of -32,7	734.	
System Noise Warning Flag	Integer SDS	1	nray*nscan	-	-	-	
System Noise Warning Flag indi	cates possible con	tamination of lo	wer window noise l	oy high towers o	f rain. 1 mear	ns	
possible contamination; 0 mear	ns no possible con	tamination.					

	1C21	Data Format Str	ucture: Part 2			
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
Minimum Echo Flag	Integer SDS	1	nray*nscan	-	-	-
Minimum echo flag indicates th	e presence of rain	in the ray (angle	e bin).			
Bin Storm Height	Integer SDS	2	2*nray*nscan	-	-	-
Bin storm height is the range bi	n number of the s	torm top.				
Satellite Local Zenith Angle	Float SDS	4	nray*nscan	-	-	-
Angle, in degrees, between the	local zenith and th	ne beam's center	line. The local (geo	odetic) zenith at	the intersect	ion of the
ray and the earth ellipsoid is use	ed.					
Spacecraft Range	Integer SDS	4	nray*nscan	-	-	m
Distance between the spacecraft	ft and the center o	of the footprint o	f the beam on the	earth ellipsoid.		
Bin Start of Oversample	Integer SDS	2	2*29*nscan	-	-	-
Starting range bin number of th	e oversample (eit	her surface or ra	in) data, counting f	rom the top dov	vn.	
Land/Ocean Flag	Integer SDS	2	nray*nscan	-	-	-
Land or ocean information. The	values of the flag	are: 0 = water, 1	. = land, 2 = coast, 3	3 = water (w/ lar	ge attenuatio	n), 4 =
land/coast (w/ large attenuation	n).					
Surface Detect Warning Flag	Integer SDS	2	nray*nscan	-	-	-
Definition TBD by NASDA.	_		·			
Bin Surface Peak	Integer SDS	2	nray*nscan	-	-	-
Range bin number of the peak s	_	peak is determin	•	ervation ground	processing, r	not by the
on board surface detection. The						,
Instrument and Scan Geometry	-			,	,	
Bin Ellipsoid	Float SDS	2	nray*nscan	-	-	-
Range bin number of the earth			,			
Bin Clutter Free Bottom	Integer SDS	2	2*nray*nscan	-	-	_
Range bin number of the lowest	_		•	or clutter free ce	ertain and po	ssible.
respectively. The clutter free ce			_		-	,
Bin DID Average	Integer SDS	2	nray*nscan	-	-	_
Mean range bin number of the	_	ion in a 5 km x 5	•	on the IFOV.		
Bin DID Top	Integer SDS	2	2*nray*nscan	-	_	-
Range bin number of the maxim	_	=	•	OV The first din	nension is the	hox size
with sizes of 5 km x 5 km and 11		icvation in a box	centered on the n	OV. THE III SE UIII	110113101113 1110	DOX SIZE,
Bin DID Bottom	Integer SDS	2	2*nray*nscan	_	_	
Range bin number of the minim				OV The first dim	- nancion is tha	hov size
with sizes of 5 km x 5 km and 11		evacion in a box	centered on the in	Ov. The mist am	iension is the	DOX 312C,
		2	140*nray*nscan	100	-120 ~ -20	dBm
Normal Sample Return power (dBm) of the norm	Integer SDS	2	•			
filled with a value of -32767. Ot	•	•				-
including an entire scan of miss					-	
_	ing bins, nave the	value 01 -32/34.	THE SIZE OF EACH TA	iy is specified iii	Kay Heauer, V	vitii aii
accuracy of 0.9 dBm.	Interes CDC	2	F*20*	100	120 ~ 20	al Duca
Surface Oversample Potura power (dPm) of the surf	Integer SDS	2	5*29*nscan	100	-120 ~ -20	dBm dBm Bine
Return power (dBm) of the surf					-	
where data is not written due to				_	an or missing	DINS,
have the value of -32734. In the					120 % 22	dD:
Rain Oversample	Integer SDS	for the central 1	28*11*nscan	100	-120 ~ -20	dBm
Return power (dBm) of the rain	•				-	
where data is not written due to			•	_	an of missing	pins,
have the value of -32734. In the	CrossTrack dimer	nsion, Offset = -1	9 and Increment =	1.		

See TRMM 1B21 information (p. 23) for minimum echo flag and bin storm height information.

2A12: TMI Hydrometeor Profile

	Pre-boost (before 7 Aug 2001)	Post-boost (after 24 Aug 2001)
Temporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24
remporar coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08
Goographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E
Vertical Coverage	Surface – 18 km	Surface – 18 km
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day
Spatial Resolution	4.4 km at 85.5 GHz	5.1 km at 85.5 GHz
	0.5 km from surface to 4 km	0.5 km from surface to 4 km
Vertical Resolution	1.0 km from 4 km to 6 km	1.0 km from 4 km to 6 km
	2.0 km from 6 km to 10 km	2.0 km from 6 km to 10 km
	4.0 km from 10 km to 18 km	4.0 km from 10 km to 18 km
	Swath Width: 760 km	Swath Width: 878 km
	Pixels/Scan: 208	Pixels/Scan: 208
Scan Characteristics	Scans/Second (SS): 36.100/60	Scans/Second (SS): 36.100/60
Scan Characteristics	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550
	Average Scans/Orbit: nscan = 2991	Average Scans/Orbit: nscan = 3023
	nscan = SS * SO + 100	nscan = SS * SO + 100
Average File Size	≈ 11 MB	≈ 11 MB

2A12 Data Format Structure: Part 1							
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit	
ECS Core Metadata	Char Attribute	10,000	-	-	-	-	
ECS core metadata							
PS Metadata	Char Attribute	10,000	-	-	-	-	
Product specific metadata							
Swath Structure	Char Attribute	5,000	-	-	-	-	
Specification of the swath geo	metry						
Scan Time	Vdata Table	9	nscan	-	-	-	
Time associated with each sca	n						
Latitude	Float SDS	4	208*nscan	-	-	degree	
Latitude information							
Longitude	Float SDS	4	208*nscan	-	-	degree	
Longitude information							
Scan Status	Vdata Table	21	nscan	-	-	-	
Status of each scan							
Navigation	Vdata Table	88	nscan	-	-	-	
Spacecraft geocentric informa	Spacecraft geocentric information						
Data Flag	Integer SDS	1	npixel*nscan	-	-	-	
Indicates the quality of the da	Indicates the quality of the data						
Rain Flag	Integer SDS	1	npixel*nscan	-	-	-	
Indicates if rain is possible. ≥0	= rain is possible,	< 0 = no rain					

2A12 Data Format Structure: Part 2							
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit	
Surface Flag	Integer SDS	1	npixel*nscan	-	0-3	1	
Indicates the type of surface	: 0 = ocean, 1 = la	and, 2 = coast, 3	= other				
Surface Rain	Float SDS	4	npixel*nscan	-	0 - 3000	mm h ⁻¹	
Instantaneous rain rate at th	e surface for eac	h pixel.					
Convective Precipitation	Float SDS	4	npixel*nscan	-	0 - 3000	mm h	
Instantaneous convective pr	ecipitation rate a	t the surface for	each pixel.				
Confidence	Float SDS	4	npixel*nscan	-	0 – 300	K	
Associated with the surface	rain, and measur	ed as an rms dev	viation in temperatures.	•			
Cloud Water	Float SDS	4	nlayer*npixel*nscan	see array	0 – 10	degree	
Cloud water content for each	h pixel at 28 laye	rs.					
Rain Water	Float SDS	4	nlayer*npixel*nscan	see array	0 - 10	degree	
Rain water content for each	pixel at 28 layers						
Cloud Ice	Vdata Table	4	nlayer*npixel*nscan	see array	0 – 10	g m ⁻³	
Cloud ice content for each p	ixel at 28 layers.						
Snow Water	Vdata Table	4	nlayer*npixel*nscan	see array	0 – 10	g m ⁻³	
Snow water content for each	n pixel at 28 layer	·s.					
Graupel Water	Integer SDS	4	nlayer*npixel*nscan	see array	0 – 10	g m ⁻³	
Graupel water content for each pixel at 28 layers.							
Latent Heating	Integer SDS	-256 – 256	nlayer*npixel*nscan	see array	0 – 10	g m ⁻³	
Latent heating release for ea	ich pixel at 28 lev	els.					

TRMM 2A12 Scan Time					
Name	Name Format Description				
Year	2-byte integer	4-digit year, e.g., 1998			
Month	1-byte integer	The month of the Year			
Day of Month	1-byte integer	The day of the Month			
Hour	1-byte integer	The hour (UTC) of the Day			
Minute	1-byte integer	The minute of the Hour			
Second	1-byte integer	The second of the Minute			
Day of Year	2-byte integer	The day of the Year			

TRMM 2A12 Data Flag Specific Viewer			
Value	Description	Value	
0	Good data quality	0	
	Channel brightness		
-9	temperature outside valid	-9	
	range		
	The neighboring 5 x 5 pixel		
-15	array is incomplete due to edge	-15	
	or bad data quality		
-21	Surface type invalid	-21	
-23	Date time invalid	-23	
-25	Latitude or longitude invalid	-25	

2A21: Precipitation Radar Surface Cross-Section

Temporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24	
Temporal Coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08	
Geographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N	
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E	
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day	
Horizontal Resolution	4.3 km	5.0 km	
	Swath Width: 215 km	Swath Width: 247 km	
	Rays/Scan: nray = 49	Rays/Scan: nray = 49	
Scan Characteristics	Scans/Second (SS): 1/0.6	Scans/Second (SS): 1/0.6	
Scan Characteristics	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550	
	Average Scans/Orbit: nscan = 9150	Average Scans/Orbit: nscan = 9250	
	nscan = SS*SO	nscan = SS*SO	
Average File Size	≈ 11 MB	≈ 11 MB	

2A21 Data Format Structure						
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-	-
ECS core metadata						
PS Metadata	Char Attribute	10,000	-	-	-	-
Product specific metadata						
Swath Structure	Other Attribute	5,000	-	-	-	-
Specification of the swath geom	netry					
Scan Time	Vdata Table	5,000	-	-	-	-
Time associated with the scan,	expressed as 8-byte	float UTC secon	d of the day.			
Latitude	Float SDS	4	nray*nscan	-	-	degree
Latitude information						
Longitude	Float SDS	4	nray*nscan	-	-	degree
Longitude information						
Scan Status	Vdata Table	15	nscan	-	-	-
Status of each scan						
Navigation	Vdata Table	88	nscan	-	-	-
Spacecraft geocentric informati	on					
Sigma-zero	Float SDS	4	nray*nscan	-	-50 – 50	dB
Normalized surface cross sectio	n					
Pat Attenuation	Float SDS	4	nray*nscan	-	-50 – 50	dB
Estimate of positive 2-way integ	grated attenuation	dB when rain is p	resent.			
Reliability Flag	Integer SDS	2	nray*nscan	-	-	-
Various reliability information in	n the form of single	digit flags.	·			
Reliability Factor	Float SDS	4	nray*nscan	-	-10 – 10	-
Ratio of the estimated value of	path attenuation to	standard deviat	ion associated with	the mean value	e of the refere	nce
estimate.	•					
Incident Angle	Float SDS	4	nray*nscan	-	-30 – 30	degree
System Noise Warning Flag indi	cates possible cont	amination of low	er window noise b	y high towers of	rain. 1 means	possible
contamination; 0 means no pos						
Rain Flag	Integer SDS	2	nray*nscan	-	-	0 or 1
Rain flag. 0 = no rain, 1 = rain pr	_		•			

2A23: Precipitation Radar (PR) Rain Characteristics

	Pre-boost (before 7 Aug 2001)	Post-boost (after 24 Aug 2001)
Temporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24
Temporal Coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08
Goographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day
Spatial Resolution	4.3 km	5.0 km
	Swath Width: 215 km	Swath Width: 247 km
	Rays/Scan: nray = 49	Rays/Scan: nray = 49
Scan Characteristics	Scans/Second (SS): 1/0.6	Scans/Second (SS): 1/0.6
Scan Characteristics	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550
	Average Scans/Orbit: nscan = 9150	Average Scans/Orbit: nscan = 9250
	nscan = SS*SO	nscan = SS*SO
Average File Size	≈ 7 MB	≈ 7 MB

2A23 Data Format Structure: Part 1						
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-	-
ECS core metadata						
PS Metadata	Char Attribute	10,000	-	-	-	-
Product specific metadata						
Swath Structure	Char Attribute	5,000	-	-	-	-
Specification of the swath geo	metry					
Scan Time	Vdata Table	9	nscan	-	-	-
Time associated with each sca	Time associated with each scan					
Latitude	Float SDS	4	208*nscan	-	-	degree
Latitude information						
Longitude	Float SDS	4	208*nscan	-	-	degree
Longitude information						
Scan Status	Vdata Table	21	nscan	-	-	-
Status of each scan						
Navigation	Vdata Table	88	nscan	-	-	-
Spacecraft geocentric information						
Rain Flag	Integer SDS	1	nray*nscan	-	-	-
Identical to minimum echo fla	g of 1C21. 0 = no r	ain; 10, 11, 12, 1	3, 15 = rain possibl	e; 20 = rain cert	ain	
Rain Type	Integer SDS	2	nray*nscan	-	-	-
Rain type flag, -88 is a missing	value for no rain a	and -99 means da	ata are missing. See	e table on next p	age.	

	2A23 Data Format Structure: Part 2					
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
Shallow Rain Flag	Integer SDS	1	nray*nscan	-	-	-
The warm rain flag is set as f	follows: 10 = may	be shallow, isola	ted; 11 = confidence in	shallow, isolate	ed; 20 = may	be
shallow but not isolated; 21	= confidence in sl	hallow but not is	solated; 0 = not shallov	v; < 0 = rain not	certain or m	nissing
Status Flag	Integer SDS	1	nray*nscan	-	-	-
Indicates whether the data a	are obtained over	sea or land, and	I the confidence in the	data		
Height of Bright Band	Integer SDS	2	nray*nscan	-	-	-
A positive height of bright ba			ean sea level. Negative	values are defi	ned as: -1112	1 = no
bright band, -8888 = no rain,		ssing				
Bright Band Intensity	Integer SDS	4	nray*nscan	-	-	-
The maximum value of the b	right band.					
Bright Band Peak Bin	Integer SDS	2	nray*nscan	-	-	-
A positive range bin number	that corresponds	s to the peak of t	the bright band.			
Bright Band Boundary	Integer SDS	2	2*nray*nscan	-	-	-
Positive bin number of the boundary of the bright band. The first index indicates the bottom.						
Bright Band Width	Integer SDS	2	nray*nscan	-	-	m
The width of the bright band	l.					
Bright Band Status	Integer SDS	2	nray*nscan	-	-	-
Indicates the status of the bi	right band detect	ion. The flag is a	composite of three int	ernal status flag	gs.	
Height of Freezing Level	Integer SDS	2	nray*nscan	-	-	m
A positive height of freezing	level is the heigh	t of the 0°C isoth	nerm above mean sea l	evel, estimated	from climate	ological
surface temperature data. N	egative numbers	are defined as:	-5555 = error occurred	in estimation of	f height of fr	eezing
level, -8888 = no rain, -9999	= missing data					
Height of Storm	Integer SDS	2	nray*nscan	-	-	m
A positive Height of Storm is	the height of the	storm top abov	e mean sea level in me	ters. A positive	Height of Sto	orm is
given only when rain is prese	ent with a high de	gree of confider	nce in 1C21 (i.e., the Mi	inimum Echo Fla	ag in 1C21 ha	as the
value of 2 [rain certain]). Ne	gative values are	defined as: -111	1 = Height of Storm no	t calculated bed	ause rain is i	not
present with a high level of o	confidence in 1C2	1, -8888 = No ra	in, -9999 = Data missin	g		
Spare	Float SDS	2	nray*nscan	-	-	-
Spare will characterize the w not disclosed.	vidth of the bright	t band. Since this	s characterization requi	ires much resea	rch, the mea	aning is

	TRMM 2A23 Rain Type Flag				
Value	Meaning	Conditions			
100	Stratiform certain	When R_type_V = T_stra; (BB exists) and R_type_H = T_stra;			
110	Stratiform certain	When R_type_V = T_stra; (BB exists) and R_type_H = T_others;			
120	Probably stratiform	When R_type_V = T_others; and R_type_H = T_stra;			
130	Maybe stratiform	When R_type_V = T_stra; (BB detection certain) and R_type_H = T_conv;			
140	Maybe stratiform or maybe transition or something else	When R_type_V = T_others; (BB hardly expected) and R_type_H = T_stra;			
152	Maybe stratiform	Shallow isolated (type of warm rain) is detected. When R_type_V = T_others; R_type_H = T_stra; and shallowRain = 20 or 21;			
160	Maybe stratiform, rain hardly expected near surface	BB may exist but is not detected when R_type_V = T_others; R_type_H = T_stra;			
170	Maybe stratiform, rain hardly expected near surface	BB hardly expected. Maybe cloud only. When R_type_V = T_others; R_type_H = T_stra;			
200	Convective certain	When R_type_V = T_conv; (no BB) and R_type_H = T_conv;			
210	Convective certain	When R_type_V = T_others; and R_type_H = T_conv;			
220	Convective certain	When R type V = T conv; and R type H = T others;			
230	Probably convective	When R_type_V = T_conv; (BB exists) and R_type_H = T_conv;			
240	Maybe convective	When R_type_V = T_conv; and R_type_H = T_stra;			
251	Convective	Shallow isolated is detected. When R_type_V = T_conv, R_type_H = T_conv and shallowRain = 10 or 11;			
252	Convective	Shallow rain (non-isolated) is detected. When R_type_V = T_conv, R type H = T conv and shallowRain = 20 or 21;			
261	Convective	Shallow isolated is detected. When R_type_V = T_conv; R_type_H = T_others; and shallowRain = 10 or 11;			
262	Convective	Shallow rain (non-isolated) is detected. When R_type_V[i] = T_conv, R_type_H[i] = T_others; and shallowRain[i] = 20 or 21;			
271	Convective	Shallow isolated is detected. When R_type_V = T_others; R_type_H = T_conv; and shallowRain = 10 or 11;			
272	Convective	Shallow isolated is detected. When R_type_V = T_others; R_type_H = T_conv; and shallowRain = 20 or 21;			
281	Convective	Shallow isolated is detected. When R_type_V = T_conv; R_type_H = T_stra; and shallowRain = 10 or 11;			
282	Convective	Shallow rain (non-isolated) is detected. When R_type_V[i] = T_conv, R_type_H[i] = T_stra; and shallowRain[i] = 20 or 21;			
291	Convective	Shallow isolated is detected. When R_type_V = T_others; R_type_H = T_stra; and shallowRain = 10 or 11;			
300	Others	When R_type_V = T_others; and R_type_H = T_others;			
312	Others	Shallow rain (non-isolated) is detected. When R_type_V = T_others, R_type_H = T_others; and shallowRain = 20 or 21;			
313	Others	If sidelobe clutter were not rejected, shallow isolated would be detected. When R_type_V = T_others, R_type_H = T_others; and shallowRain = 20 or 21;			

where R_type_V: rain type classified by the V-profile method; R_type_H: rain type classified by the H-pattern method.

The above assignment of numbers has the following meaning:

(merged) Rain Type / 100 = 1: stratiform; 2: convective; 3: others.

(merged) Rain Type Flag % 100 = sub-category

(merged) Rain Type Flag % 10 = 0: usual; 1: shallow isolated; 2: shallow non-isolated; 3: sidelobe clutter only where Rain Type Flag % 10 means MOD.

	TRMM 2A23 Status Flag					
Value	Meaning	Where				
0	good	over ocean				
10	BB detection may be good	over ocean				
20	R-type classification may be good (BB detection is good or BB does not exist)	over ocean				
30	Both BB detection and R-type classification may be good	over ocean				
50	not good (because of warnings)	over ocean				
100	bad (possible data corruption)	over ocean				
1	good	over land				
11	BB detection may be good	over land				
21	R-type classification may be good (BB detection is good or BB does not exist)	over land				
31	Both BB detection and R-type classification may be good	over land				
51	not good (because of warnings)	over land				
101	bad (possible data corruption)	over land				
2	good	over coastline				
12	BB detection may be good	over coastline				
22	R-type classification may be good (BB detection is good or BB does not exist)	over coastline				
32	Both BB detection and R-type classification may be good	over coastline				
52	not good (because of warnings)	over coastline				
102	bad (possible data corruption)	over coastline				
4	good	over inland lake				
14	BB detection may be good	over inland lake				
24	R-type classification may be good (BB detection is good or BB does not exist)	over inland lake				
34	Both BB detection and R-type classification may be good	over inland lake				
54	not good (because of warnings)	over inland lake				
104	bad (possible data corruption)	over inland lake				
9	may be good	land/sea unknown				
19	BB detection may be good	land/sea unknown				
29	R-type classification may be good (BB detection is good or BB does not exist)	land/sea unknown				
39	Both BB detection and R-type classification may be good	land/sea unknown				
59	not good (because of warnings)	land/sea unknown				
109	bad (possible data corruption)	land/sea unknown				

When the status flag is "no rain" or "data missing", status flag contains -88 for no rain and -99 for missing data. Assignment of the above numbers are based on the following rules:

(Status/10) % 10	Meaning			
0	good, may be good when status < 100 and not good when status ≥ 100			
1	BB detection not so confident			
2	R-type classification not so confident (but BB detection is good or doesn't exist)			
3	BB detection and R-type classification both not confident			
5	Overall quality of the processed data is not good			
Status % 10				
0	over ocean			
1	over land			
2	over coastline			
4	over inland lake			
9	land/sea unknown			

In other words, if the Status Flag is \geq 100, the data are untrustworthy; between 10 and 100 then the data are not confident, equal to 9 then the data may be good; and between 0 and 9 then the data are good.

2A25: Precipitation Radar (PR) Rainfall Rate and Profile

	Pre-boost (before 7 Aug 2001)	Post-boost (after 24 Aug 2001)
Temporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24
remporar coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08
Goographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day
Spatial Resolution	4.3 km	5.0 km
	Swath Width: 215 km	Swath Width: 247 km
	Rays/Scan: nray = 49	Rays/Scan: nray = 49
Scan Characteristics	Scans/Second (SS): 1/0.6	Scans/Second (SS): 1/0.6
Scan Characteristics	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550
	Average Scans/Orbit: nscan = 9150	Average Scans/Orbit: nscan = 9250
	nscan = SS*SO	nscan = SS*SO
Average File Size	≈ 16 MB compressed, 253 MB original	≈ 16 MB compressed, 256 MB original

2A25 Data Format Structure: Part 1							
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit	
ECS Core Metadata	Char Attribute	10,000	-	-	-	-	
ECS core metadata							
PS Metadata	Char Attribute	10,000	-	-	-	-	
Product specific metadata							
Clutter Flag	Vdata Table	4	49	-	-	-	
Mainlobe Clutter Edge and Sid	lelobe Clutter Rang	ge					
Swath Structure	Char Attribute	5,000	-	-	-	-	
Specification of the swath geo	metry.						
Scan Time	Vdata Table	8	nscan	-	-	-	
Time associated with the scan	Time associated with the scan, expressed as 8-byte float UTC second of the day.						
Latitude	Float SDS	4	nray*nscan	-	-	degree	
Latitude information							
Longitude	Float SDS	4	nray*nscan	-	-	degree	
Longitude information							
scLocalZenith	Float SDS	4	nray*nscan	-	-	degree	
Spacecraft local zenith angle.							
Scan Status	Vdata Table	15	nscan	-	-	-	
Status of each scan.							
Navigation	Vdata Table	88	nscan	-	-	-	
Spacecraft geocentric information.							
Rain Rate	Integer SDS	2	80*nray*nscan	100	0.0 ~ 300	mm/h	
Estimate of rain rate at the rada 889) means ground clutter.	ar range gates fron	n 0 to 20 km alon	g the slant range. A	A value of -88.88	3 mm/hr (s	tored as -	
Reliability	Integer SDS	1	80*nray*nscan	-	0 ~ 255	-	
For estimated rain rates at the	radar range gates f	rom 0 to 20 km.					

Attenuation corrected reflect reflectivity less than 0.0 dBZ a missing data in reflectivity proparameter Node Range bin numbers of the noof the parameters between the Attenuation Parameter \(\alpha \) It relates the attenuation coeffects ray.	are set to 0.0 dBZ ofile. Integer SDS des at which the he nodes are line Float SDS	2 value of -88 values of Attenuarly interpolate	.88 dB (stored as -8888 5*nray*nscan uation and Z-R Parame) is a ground	clutter flag, -999 0 ~ 79	99 is for
Attenuation corrected reflect reflectivity less than 0.0 dBZ a missing data in reflectivity proparameter Node Range bin numbers of the noof the parameters between the Attenuation Parameter \(\alpha \) It relates the attenuation coefficient ray. Attenuation Parameter \(\beta \)	civity factor (Z) at are set to 0.0 dBZ ofile. Integer SDS des at which the he nodes are line	the radar range Z. A value of -88. 2 values of Attendarly interpolate 4	e gates from 0 to 20 km .88 dB (stored as -8888 5*nray*nscan uation and Z-R Parame	along the sla) is a ground	ant range. Values clutter flag, -999 0 ~ 79	s of 99 is for -
reflectivity less than 0.0 dBZ a missing data in reflectivity pro Parameter Node Range bin numbers of the nod of the parameters between the Attenuation Parameter α It relates the attenuation coefficient ray. Attenuation Parameter β	are set to 0.0 dBZ ofile. Integer SDS des at which the he nodes are line Float SDS	2 value of -88 values of Attenuarly interpolate	.88 dB (stored as -8888 5*nray*nscan uation and Z-R Parame) is a ground	clutter flag, -999 0 ~ 79	9 is for
missing data in reflectivity properties of the note of the parameters between the Attenuation Parameter α at relates the attenuation coefficient ray. Attenuation Parameter β	ofile. Integer SDS des at which the he nodes are line Float SDS	2 values of Atten arly interpolate	5*nray*nscan uation and Z-R Parame d.	-	0~79	-
Parameter Node Range bin numbers of the nod of the parameters between the Attenuation Parameter α It relates the attenuation coefeach ray. Attenuation Parameter β	Integer SDS des at which the he nodes are line Float SDS	values of Attendarly interpolate	uation and Z-R Parame d.	- ters are given		- e value
Range bin numbers of the noo of the parameters between the Attenuation Parameter α It relates the attenuation coefficient each ray. Attenuation Parameter β	des at which the he nodes are line Float SDS	values of Attendarly interpolate	uation and Z-R Parame d.	- ters are given		- e value
of the parameters between the Attenuation Parameter α It relates the attenuation coeffects and ray. Attenuation Parameter β	he nodes are line Float SDS	arly interpolate	d.	ters are given	ı (see below). Th	e value
Attenuation Parameter α It relates the attenuation coe each ray. Attenuation Parameter β	Float SDS	4				
It relates the attenuation coe each ray. Attenuation Parameter ß		-	5*nray*nscan			
It relates the attenuation coe each ray. Attenuation Parameter ß			a may natah	_	0.00010 ~	_
each ray. Attenuation Parameter ß	fficient, k (dB/km		,		0.00200	_
Attenuation Parameter ß		n) to the Z-facto	r: $k = \alpha^{\beta}$. α is computed	at ncell2(5)	radar range gate	s for
t relates the attenuation coe	Float SDS	4	nray*nscan	-	0.5 ~ 2.0	-
t relates the attenuation coe	fficient, k (dB/km	n) to the Z-facto	r: $k = \alpha * Z^{\beta}$. β is comput	ed for each r		
Z-R Parameter a	Float SDS	4	5*nray*nscan	-	0.0050 ~	_
			•		0.2000	
Parameter a for Z-R relationsh			* *	_	to the freezing le	vel, th؛
non-uniformity parameter (ζ)				technique.		
	Float SDS	4	5*nray*nscan	. .	0.5 ~ 1.0	-
Parameter a for Z-R relationsh	• •			_	to the freezing le	evel, th
non-uniformity parameter (ζ)	and the correcti	on factor (ε) for	the surface reference	technique.		
Precipitation Water	Float SDS	4	5*nray*nscan	_	-	_
Parameter A		•	5 may noodii			
Parameter A in the M = AZ^B	relationship.					
Precipitation Water	Float SDS	4	5*nray*nscan	_	_	_
Parameter B			,			
Parameter B in the M = AZ^B	relationship.					
Precipitation Water	Float SDS	4	2*nray*nscan	_	-	_
Parameter Sum						
Vertically integrated value of				_		x is the
precipitation liquid water con						_
precipitation ice content from	n the top of the s	torm to the free	ezing height. Units are	gkm/m3(kg/n	n2) and it ranges	from
0.0 to 50.0.	=1 .055		т		0 . 105	Inc
	Float SDS	4	nray*nscan	-	0 ~ 100	dBZ
Maximum value of measured	·		J.			
_	Integer SDS	2	nray*nscan	-		-
Rain Flag indicates rain or no				:	ult value is 0 (no	rain).
Bit 0 is the least significant bit				/alue is 2').		
_	Integer SDS	2	5*nray*nscan	-	0~79	-
Range Bin Number of various						
from the NASDA definition of	_			_	umbers in the al	gorith
range from 0 to 79 and have a	an interval of 250	Jm. The earth el	Ilipsoid is defined as ra	nge bin 79.		
					(1)0.0 ~	
Averaged Rain Rate	Float SDS	4	2*nray*nscan	_	3000.0	mm/h
		·	,		(2)0.0 ~	,
					300.0	

2A25 Data Format Structure: Part 3							
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit	
Precipitable Water Sum	Float SDS	4	2*nray*nscan	-	0 – 50	g km m ⁻³	
Vertically integrated value o	of sum precipitati	on water conten	t calculated from Ze a	at each range l	bin. The first inc	dex is the	
precipitation liquid water co	ontent from the f	reezing height to	the actual surface. T	he second ind	ex is the sum o	f	
precipitation ice content fro	m the top of the	storm to the fre	ezing height.				
Method Flag	Integer SDS	2	nray*nscan	-	-	-	
Method Flag indicates whicl	n method is used	to derive the rai	in rate. The default va	alue is 0 (includ	ding no rain cas	e). Bit 0 is	
the least significant bit (i.e.,							
Epsilon Epsilon	Float SDS	4	nray*nscan	-	0.0 ~ 100.0	-	
Correction factor for the sur		•	may nocum		0.0 100.0		
Epsilon_0	Float SDS	4	nray*nscan	-	0.0 ~ 100.0	-	
The adjustment parameter		•	•	1 algorithm)	0.0 100.0		
Zeta	Float SDS	4	2*nray*nscan	-	0.0 ~ 100.0	_	
Roughly represents the rain		•	•	node	0.0 100.0	-	
Zeta_mn	Float SDS	4	2*nray*nscan	ious.	0.0 ~ 100.0		
Average of zeta in the vicini		•	· · · · · · · · · · · · · · · · · · ·	- d +broo IFO\/s\		- Lucina two	
methods.	ty of each beam [position (average	e over tillee scalls all	a tillee irovs)	. It is calculated	using two	
Zeta_sd	Float SDS	4	2*nray*nscan	_	0.0 ~ 100.0	_	
Standard deviation of zeta i		•		and three IFO		ted using	
wo methods.	in the vicinity of e	acii beaiii positii	on (using timee scans	and three ir o	vsj. it is calcula	teu using	
Ki	Float SDS	4	2*nray*nscan	_	0.0 ~ 99.0	_	
Normalized standard deviat		•	•	on small valu		c cat ta QQ (
It is calculated using two me		rta_su/Zeta_IIIII.	when Zeta_iiii takes	o on sinan valu	les (01 2e10) XI I	3 361 10 33.0	
NUBF Correction Factor	Float SDS	4	3*nray*nscan	_	1 ~ 10	_	
The Non-Uniform Beam Filli		•	•	reflectivity and		alculations	
lt's range is between 1.0 and			ed as a correction to	reflectivity and	u attenuation c	aicuiations.	
-		2	nray*nscan		0 ~ 32767		
Quality Flag See note #1 below.	Integer SDS	2	ili ay 115Cali	-	0 32/0/	-	
Near Surface Rain	Float SDS	4	nray*nscan		0 ~ 3000	mm hr ⁻¹	
Rainfall rate near the surfac		•		-	0 3000	1111111111	
Near Surface Z	Float SDS	4			0.0 ~ 100.0	407	
		•	nray*nscan	-	0.0 ~ 100.0	dBZ	
Reflectivity near the surface			-		0 2000	, -1	
Estimated Surface Rain	Float SDS	4	nray*nscan	-	0 ~ 3000	mm hr ⁻¹	
Reflectivity near the surface		9 mm nr is a m					
PIA	Float SDS	4	3nray*nscan		- (2) -1	-	
Path Integrated Attenuation				-	estimate (2) Th	ie differenc	
petween the PIA at the surf		_		om 2A21			
Error Rain	Float SDS	4	nray*nscan	-	-	dB	
Error in Near Surface Rain R							
Error Z	Float SDS	4	nray*nscan	-	0.0 ~ 100.0	dBZ	
Error in Near Surface Z.							
Spares	Float SDS	4	2*nray*nscan	-	-	-	
Contents and ranges are no							
Height of Freezing Level	Float SDS	4	nray*nscan	-	-	m	
A positive Height of Freezing	g Level is the heig	ght of the 0°C iso	therm above mean se	ea level in met	ters. estimated	from	
climatological surface temp	erature data. Ne	gative values are	defined as in 2A23.				
climatological surface temp Sigma-zero	erature data. Neg Float SDS	gative values are 4	defined as in 2A23. nray*nscan	-	-50 – 20	dB	

Note #1: Quality Flag Description

The default value is 0 (normal). Bit 0 is the least significant bit (i.e., if bit i = 1 and other bits =0, the unsigned integer value is $2^{**}i$). The following meanings are assigned to each bit in the 16-bit integer if the bit = 1.

Correction Factor	Meaning			
0	normal			
1	unusual situation in rain average			
2	NSD of zeta (xi) calculated from less than 6 points			
4	NSD of PIA calculated from less than 6 points			
8	NUBF for Z-R below lower bound			
16	NUBF for PIA above upper bound			
32	epsilon not reliable, epsi∕sig less than or equal to 0.0			
64	2A21 input data not reliable			
128	2A23 input data not reliable			
256	range bin error			
512	sidelobe clutter removal			
1024	probability=0 for all tau			
2048	pia_surf_ex less than or equal to 0.0			
4096	const Z is invalid			
8192	reliabFactor in 2A21 is NaN			
16384	data missing			

TRMM PR 2A25 Clutter Flags				
Name	Format	Description		
		Absolute value of the difference in Range bin Numbers between		
Mainlobe Clutter Edge	1-byte integer	the detected surface and the edge of the clutter from the		
		mainlobe.		
		Absolute value of the difference in Range Bin Numbers between		
Sidelobe Clutter Range	3 x 1-byte integer	the detected surface and the clutter position from the sidelobe.		
		A zero means no clutter indicated in this field since less than 3		
		bins contained significant clutter.		

TRMM 2A25 Reliability		
Bit	Meaning if bit=1	
0	rain possible	
1	rain certain	
2	bright band	
3	large attenuation	
4	weak return (Zm < 20 dBZ)	
5	estimated Z < 0 dBZ	
6	main-lobe clutter or below surface	

TRMM 2A25 Rain Flag		
Bit	Meaning if bit=1	
0	rain possible	
1	rain certain	
2	Zeta^ Beta > 0.5 [Path Integrated Attenuation	
	(PIA) larger than 3 dB]	
3	large attenuation (PIA larger than 10 dB)	
4	stratiform	
5	convective	
6	bright band exists	
7	warm rain	
8	rain bottom above 2 km	
9	rain bottom above 4 km	
10 - 13	not used	
14	data missing between rain top and bottom	
15	not used	

	TRMM 2A25 Method Flag
	If all bits 0: no rain. Otherwise:
Bit	Meaning when set (except bit 1)
1	0: over ocean
1	1: over land
2	over coast, river, etc.
3	OIA from constant-Z-near-surface assumption
4	spatial reference
5	temporal reference
6	global reference
7	hybrid reference
8	good to take statistics of epsilon
9	HB method used, SRT totally ignored
10	very large pia_srt for given zeta
11	very small pia_srt for given zeta
12	no ZR adjustment by epsilon
13	no NUBF correction because NSD unreliable
14	surface attenuation > 60 dB
15	data partly missing between rain top and bottom

2B31: Combined Rainfall Profile

Temporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24	
Temporal Coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08	
Goographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N	
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E	
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day	
Horizontal Resolution	4.3 km	5.0 km	
	Swath Width: 215 km	Swath Width: 247 km	
	Rays/Scan: nray = 49	Rays/Scan: nray = 49	
Scan Characteristics	Scans/Second (SS): 1/0.6	Scans/Second (SS): 1/0.6	
Scall Characteristics	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550	
	Average Scans/Orbit: nscan = 9150	Average Scans/Orbit: nscan = 9250	
	nscan = SS*SO	nscan = SS*SO	
Average File Size	≈ 11 MB compressed	≈ 11 MB compressed	

	2B31 Data Format Structure: Part 1								
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit			
ECS Core Metadata	Char Attribute	10,000	-	-	-	-			
ECS core metadata									
PS Metadata	Char Attribute	10,000	-	-	-	-			
Product specific metadata									
Swath Structure	Char Attribute	5,000	-	-	-	-			
Specification of the swath geon	netry								
Scan Time	Vdata Table	9	nscan	-	-	-			
Time associated with each scan									
Latitude	Float SDS	4	208*nscan	-	-	degree			
Latitude information									
Longitude	Float SDS	4	208*nscan	-	-	degree			
Longitude information									
Scan Status	Vdata Table	21	nscan	-	-	-			
Status of each scan									
Navigation	Vdata Table	88	nscan	-	-	-			
Longitude information									
D-hat	Integer SDS	2	nray x nscan	100	0.7 – 1.8	mm**			
Correlation-corrected mass-we	ighted mean drop	diameter.							
Sigma D-hat	Integer SDS	2	nray x nscan	100	0.0 - 2.0	mm**			
RMS uncertainty in D-Hat. The	accuracy is 0.01 "r	ormalized" mm.							
Graupel	Integer SDS	2	nradarrange x nray x nscan	1000	0 – 10	g m ⁻³			
graupel is defined as frozen hyd	drometeors with a	density of 600 K	g m ⁻³						
snow	Integer SDS	2	nradarrange x nray x nscan	1000	0 – 10	dBm			
snow is defined as frozen hydro	meteors with a de	ensity of 100 Kg i	m ⁻³ .						
prSurf	Integer SDS	1	nray*nscan	-	0 – 500	mm hr ⁻¹			
The surface precipitation rate (liquid plus solid). 7	The accuracy is 0	.1 mm hr ⁻¹ .						
	** indicates normalized units Δ normalized unit V is defined as $V = X * R^{0.37}R$ such that V is a normalized version of $X R$								

^{**} indicates normalized units. A normalized unit, Y, is defined as $Y = X * R^{0.37}R$ such that Y is a normalized version of X. R represents rain rate.

The dimension *nradarrange* represents the number of radar range gates, up to about 20 km from the earth ellipsoid. The gates range from 0 to 79 and each gate is 250 m apart.

2B31 Data Format Structure: Part 2									
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit			
R-hat	Integer SDS	2	nradarrange * nray*nscan	10	0 – 500	mm hr ⁻¹			
Instantaneous rain rate at the r	adar range gates. [·]	The accuracy is 0	.1 mm hr ⁻¹ .						
Sigma R-hat	Integer SDS	2	nradarrange * nray*nscan	10	-125 – 125	mm hr ⁻¹			
RMS uncertainty in the R-hat es possible" detection by the rada reserved for cases where the RI	r rather than the "	rain-certain" ass	ociated with positiv	ve values). The va	alues -125 an	d 125 are			
RR-Surf	Float SDS	4	nray*nscan	-	0 – 500	mm hr ⁻¹			
Surface rain rate.									
Sigma RR-Surf	Integer SDS	2	nray*nscan	100	-125 – 125	mm hr ⁻¹			
RMS uncertainty in RR-Surf. (The negative sign indicating estimates based on a "rain-possible" detection by the radar rather than the "rain-certain" associated with positive values). The values -125 and 125 are reserved for cases where the RMS uncertainty could not be accurately estimated. The accuracy is 0.5 mm/hr.									
latentHeadHH	Float SDS	4	nlayer*nray *nscan	-	-	K hr ⁻¹			
The "hydrometeor heating" calc archival temperature/ pressure is assumed to be liquid. Heating	/humidity soundin	gs which depend							
spare	Float SDS	4	4*nray*nscan	-	-	-			

TRMM 2B31 Geolocation

Contents and ranges are not public.

Geolocation is the earth location of the center of the IFOV at the altitude of the earth ellipsoid. The first dimension is latitude and longitude, in that order. The next dimensions are numbers of pixels and scans. Values are represented as floating point decimal degrees. Off-earth is represented as -9999.9. Latitude is positive north, negative south. Longitude is positive east, negative west. A point on the 180° meridian is assigned to the western hemisphere.

TRMM 2B41 D-hat Description

D-hat is the correlation-corrected mass-weighted mean drop diameter. The accuracy is 0.01 "normalized" mm (the value 0 indicates no rain or bad data). The average value of dHat is around 1.1 "normalized" mm, a unit which comes from the fact that dHat is related to the true mass-weighted mean drop diameter D* mm by the formula dHat = D*rHat-0.155 (with rHat in mm/hr).

Layers and lower and upper boundaries used for calculating latent heat (specified as height above earth ellipsoid)

Layer 1: 16 km – 18 km

Layer 2: 14 km – 16 km

Layer 3: 12 km – 14 km

Layer 4: 10 km – 12 km

Layer 5: 8 km – 10 km

Layer 6: 7 km – 8 km

Layer 7: 6 km – 7 km

Layer 8: 5 km – 6 km

Layer 9: 4 km – 5 km

3A11: Monthly Oceanic Rainfall

Temporal Coverage	Start Date: 1997-12-01
	Stop Date: 2015-03-31
Goographic Coverage	Latitude: 40°S – 40°N
Geographic Coverage	Longitude: 180°W – 180°E
Temporal Resolution	Monthly
Horizontal Resolution	5° x 5°; nlat = 16, nlon = 72
Average File Size	≈ 23 KB compressed

3A11 Data Format Structure								
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit		
ECS Core Metadata	Char Attribute	10,000	-	-	-	-		
ECS core metadata								
PS Metadata	Char Attribute	10,000	-	-	-	-		
Product specific metadata								
GridStructure	Char Attribute	5,000	-	-	-	-		
GridStructure gives the specific	ation of the geome	etry of the grids.						
Monthly Rainfall	Float SDS	4	nlat*nlon	-	0 – 3000	mm		
The Monthly Rainfall is the surf	ace rainfall over o	ceans in 5° x 5° b	oxes from 40°N x 4	0°S.				
Number of Samples	Integer SDS	4	nlat*nlon	-	0 – 500,000	-		
The number of samples over th	e oceans in each 5	° x 5° box for one	e month.					
Chi Square Fit	Integer SDS	4	nlat*nlon	-	1 – 10 ⁹	0		
Indicates how well the histogra	m of brightness te	mperatures fits t	he lognormal distri	ibution function.				
Freezing Level	Float SDS	4	nlat*nlon	-	0 – 6	km		
Estimated height of the 0°C isot	herm.							
T_0	Float SDS	4	nlat*nlon	-	160- 180	K		
The mean of non-raining bright	ness temperatures	S.						
r_0	Float SDS	4	nlat*nlon	-	0 – 15	mm h ⁻¹		
Logarithmic mean rain rate.								
Sigma_r	Float SDS	4	nlat*nlon	-	0-1	mm h ⁻¹		
Standard deviation of the logar	ithmic rain rate.							
Probability of Rain	Float SDS	4	nlat*nlon	-	0 – 1	-		
Probability of rain in each 5° x 5								
Quality Indicators 1 - 3	Integer SDS	2	nlat*nlon	-	-			
Spare	Integer SDS	2	nlat*nlon	-	-			
Note that this product only incl	udes data over oce	eans. Data over l	and are assigned th	e missing value	of -9999.			

3A12: Mean 2A12 Profile and Surface Rainfall

Temporal Coverage	Start Date: 1997-12-01
	Stop Date: 2015-03-31
Geographic Coverage	Latitude: 40°S – 40°N
	Longitude: 180°W – 180°E
Temporal Resolution	Monthly
Horizontal Resolution	0.5° x 0.5°; nlat = 160, nlon = 720
Average File Size	≈ 56 MB compressed

3A12 Data Format Structure								
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit		
ECS Core Metadata	Char Attribute	10,000	-	-	-	-		
ECS core metadata								
PS Metadata	Char Attribute	10,000	-	-	-	-		
Product specific metadata								
GridStructure	Char Attribute	5,000	-	-	-	-		
GridStructure gives the spe	cification of the geom	etry of the grids.						
SurfaceRain	Float SDS	4	nlat*nlon	-	0 – 3000	mm h ⁻¹		
Monthly mean of the instar	ntaneous rain rate for	each grid box.						
SurfacePrecipitation	Float SDS	4	nlat*nlon	-	0 – 3000	mm h ⁻¹		
Monthly mean of the instar	ntaneous precipitation	rate at the surfa	ace for each grid box					
ConvectPrecipitation	Float SDS	4	nlat*nlon	-	0 – 3000	mm h ⁻¹		
Monthly mean of the instar	ntaneous convective ra	ain rate at the su	rface for each grid b	ox.				
CldWater	Float SDS	4	nlat*nlon*nlayer	-	0 – 10	g m ⁻³		
Monthly mean cloud liquid	water content for eac	h grid box.						
RainWater	Float SDS	4	nlat*nlon*nlayer	-	0 – 10	g m ⁻³		
Monthly mean precipitation	n water content for ea	ch grid box.						
CldIce	Float SDS	4	nlat*nlon*nlayer	-	0 – 10	g m ⁻³		
Monthly mean cloud ice wa	ter content for each g	rid box.						
Snow	Float SDS	4	nlat*nlon*nlayer	-	0 – 10	g m ⁻³		
Monthly mean snow liquid	water content for eac	h grid box.						
Graupel	Float SDS	4	nlat*nlon*nlayer	-	0-10	g m ⁻³		
Monthly mean graupel liqui	id water content for e	ach grid box.						
LatentHeat	Float SDS	4	nlat*nlon*nlevel	-	-256 – 256	K h ⁻¹		
Monthly mean latent heatir	ng release.							
NpixTotal	Integer SDS	4	nlat*nlon	-	0 – 10,000	-		
Monthly number of pixels v	_	to zero for each	grid, used to remove	sea ice.				
NpixPrecipitation	Integer SDS	4	nlat*nlon	-	0 – 10,000	-		
Monthly number of pixels v	vith surfacePrecipitati	on greater than a	zero for each grid bo	x. Over the	oceans, each p	ixel is als		
required to have a probabil								
Notes: nlevel represents the	e number of latent he	ating levels (28)	per grid box and <i>nlay</i>	<i>er</i> represe	nts the number	r of		
profiling layers per grid box		•	•	•				

41

3A25: Spaceborne Radar Rainfall

Tomporal Coverage	Start Date: 1997-12-01
Temporal Coverage	Stop Date: 2015-03-31
Goographic Coverage	Latitude: 40°S – 40°N
Geographic Coverage	Longitude: 180°W – 180°E
Temporal Resolution	Monthly
Horizontal Resolution	5° x 5° and 0.5° x 0.5°
Average File Size	≈ 38 MB compressed

3A25 Data Structure: Part 1								
Name	Tuno	Record Size	Dim Size	Panga	Unit			
Name	Type	(bytes)	(# of records)	Range	Onit			
rzStratPix2	Integer SDS	2	nlath*nlonh*2	0 to 2,000,000	-			
The number of R-Z coefficient pi	xel counts cor	nditioned on stra	atiform rain for near-surf	face and 2km heigh	ts over 0.5° x 0.5°			
boxes for one month.								
rzConvPix2	U	2	nlath*nlonh*2	0 to 2,000,000	-			
The number of R-Z coefficient pi	xel counts cor	nditioned on cor	vective rain for near-sur	face and 2km heigh	nts over 0.5° x 0.5°			
boxes for one month.								
rzPix2	Integer SDS	2	nlath*nlonh*2	0 to 2,000,000	-			
The number of R-Z coefficient pi			_		e month.			
surfRainStratPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-			
Counts of non-zero near-surface								
surfRainConvPix2	Integer SDS		nlath*nlonh	0 to 2,000,000	-			
Counts of non-zero near-surface								
e_surfRainStratPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-			
Counts of non-zero estimated su					onth.			
e_surfRainConvPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-			
Counts of non-zero estimated su					nonth.			
e_surfRainPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-			
Counts of non-zero estimated su								
shallowRainPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-			
Counts of shallow rain over 0.5°								
shallowIsoPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-			
Counts of shallow isolated rain of								
epsilon0StratPix2		2	nlath*nlonh	0 to 2,000,000	-			
Counts of epsilon0 conditioned					ith.			
epsilon0ConvPix2	Integer SDS		nlath*nlonh	0 to 2,000,000	-			
Counts of epsilon0 conditioned					nth.			
epsilonStratPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	- L			
Counts of epsilon conditioned or					n.			
epsilonConvPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	- -			
Counts of epsilon conditioned or Strat. Rain Pixel Number 2		ain and use of 2.	nlath*nlonh*nh3		ın.			
	Integer SDS	=		0 to 2,000,000	-			
The number of non-zero rain rat Conv. Rain Pixel Number 2	Integer SDS	4	nlath*nlonh*nh3	0 to 2,000,000	-			
The number of non-zero rain rat	_							
	Integer SDS		nlath*nlonh*nh3					
Rain Pixel Number 2 The Rain Pixel Number 2 is the n		4 or of non zoro r		0 to 2,000,000	- I rainfall at the fived			
heights of 2 km, 4 km, 6 km, and				verageu raiiiiaii and	a raiiiiaii at tiie iixed			
neignts of 2 km, 4 km, 0 km, diff	i patii aveiage	10161 0'2 X 0'2	טטאבט.					

		3A25 Data S	tructure: Part 2		
Nama	Toma	Record Size	Dim Size	Damas	11
Name	Туре	(bytes)	(# of records)	Range	Unit
surfRainPix2	Integer SDS	4	nlath*nlonh	0 to	
Surrament	integer 3D3	4	matii momi	2,000,000,000.	-
Near-surface rain counts at a ho	rizontal resolu	tion of 0.5° x 0.			
Bright Band Pixel Number 2	Integer SDS	4	nlath*nlonh	0 to 2,000,000	-
The number of bright band cour		.5° x 0.5° box fo			
Total Pixel Number 2	Integer SDS	4	nlath*nlonh	0 to 2,000,000	-
The Total Pixel Number 2 is the		al pixels over 0.!			1
rzStratB2	Float SDS	4	nlath*nlonh*2	0.0 to 1.0	mm h ⁻¹
The B parameter in rainfall-refle	-		=	R, Z pairs conditior	ned on stratiform rain.
Computed for near-surface and		t a horizontal re			
rzStratA2	Float SDS	4	nlath*nlonh*2	0.0 to 1.0	mm h ⁻¹
The A parameter in rainfall-refle	•		_	R, Z pairs conditior	ned on stratiform rain.
Computed for near-surface and		t a horizontal re			4
rzConvB2	Float SDS	4	nlath*nlonh*2	0.0 to 1.0	mm h ⁻¹
The B parameter in rainfall-refle	-		=		ned on convective
rain. Computed for near-surface	e and 2km heig	hts at a horizon	tal resolution of 0.5° x 0	.5°	
rzConvA2	Float SDS	4	nlath*nlonh*2	0.0 to 1.0	mm h ⁻¹
The A parameter in rainfall-refle	•		_	•	ned on convective
rain. Computed for near-surface	e and 2km heig	hts at a horizon	tal resolution of 0.5° x 0	.5°	
					4
rzB2	Float SDS	4	nlath*nlonh*2	0.0 to 1.0	mm h ⁻¹
The B parameter in rainfall-refle	ectivity relation	$R = AZ^B$ from	fitting of instantaneous	R, Z pairs. Compute	ed for near-surface
and 2km heights at a horizontal	resolution of 0).5° x 0.5°			
rzA2	Float SDS	4	nlath*nlonh*2	0.0 to 1.0	mm h ⁻¹
The A parameter in rainfall-refle	· ·		fitting of instantaneous	R, Z pairs. Compute	ed for near-surface
and 2km heights at a horizontal	resolution of (4
surfRainStratDev2	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Standard deviation of non-zero	near-surface ra	ain conditioned			
surfRainStratMean2	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Mean of non-zero near-surface		ed on stratiform	rain at a horizontal reso	lution of 0.5° x 0.5	
surfRainConvDev2	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Standard deviation of non-zero					
surfRainConvMean2	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Mean of non-zero near-surface	rain condition	ed on convective		olution of 0.5° x 0.5	
e_surfRainStratdev2	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Standard deviation of non-zero	estimated surf	ace rain below	clutter (see 2A25 algorit	nm user guide) con	ditioned on
stratiform rain at a horizontal re	esolution of 0.5	s° x 0.5°			
e_surfRainStratMean2	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Mean of non-zero estimated sur	rface rain belo	w clutter (see 2	A25 algorithm user guide	e) conditioned on s	tratiform rain at a
horizontal resolution of 0.5° x 0.	.5°				
e_surfRainConvdev2	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Standard deviation of non-zero	estimated surf	ace rain below	clutter (see 2A25 algorit	nm user guide) con	ditioned on
convective rain at a horizontal r			-	-	
e_surfRainConvMean2	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
			A 2E algorithm usor guide) conditioned on c	onvective rain at a
Mean of non-zero estimated sur	rface rain belo	w clutter (see 2)	AZS algoritiiii user gulut	e) contaitioned on c	Olivective raili at a
_		w clutter (see 2)	AZ5 algoritiiii user gulut	e) conditioned on c	onvective rain at a
Mean of non-zero estimated sur		w clutter (see 2) 4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Mean of non-zero estimated sur horizontal resolution of 0.5° x 0.	.5° Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹

		3A25 Data S	tructure: Part 3		
Nome	Tuno	Record Size	Dim Size	Danas	lluit
Name	Type	(bytes)	(# of records)	Range	Unit
e_surfRainMean2	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Mean of non-zero estimated sur	rface rain belo	w clutter (see 2	A25 algorithm user guide)	at a horizontal re	
shallowRaindev2	Float SDS	4	nlath*nlonh	0.0 to 3,000.0	mm h ⁻¹
Standard deviation of shallow ra	ain at a horizor	ntal resolution o	f 0.5° x 0.5°		
shallowRainMean2	Float SDS	4	nlath*nlonh	0.0 to 3,000.0	mm h ⁻¹
Mean of shallow rain at a horizo	ntal resolution	n of 0.5° x 0.5°			
shallowIsoRaindev2	Float SDS	4	nlath*nlonh	0.0 to 3,000.0	mm h ⁻¹
Standard deviation of shallow is	olated rain at	a horizontal reso	olution of 0.5° x 0.5°		
shallowIsoRainMean2	Float SDS	4	nlath*nlonh	0.0 to 3,000.0	mm h ⁻¹
Mean of shallow isolated rain at	a horizontal r	esolution of 0.5	° x 0.5°		
epsilon0StratDev2	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Standard deviation of epsilon0 of	conditioned on	stratiform rain	and use of 2A21 SRT at a	horizontal resolut	ion of 0.5° x 0.5°
epsilon0StratMean2	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Mean of epsilon0 conditioned o	n stratiform ra	in and use of 2	A21 SRT at a horizontal res	solution of 0.5° x ().5°
epsilon0ConvDev2	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Standard deviation of epsilon0 of		convective rain			tion of 0.5° x 0.5°
epsilon0ConvMean2	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Mean of epsilon0 conditioned o		ain and use of 2			0.5°
epsilonStratDev2	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Standard deviation of epsilon co		stratiform rain a			on of 0.5° x 0.5°
epsilonStratMean2	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Mean of epsilon conditioned on		n and use of 2A2			5°
epsilonConvDev2	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Standard deviation of epsilon co		convective rain		horizontal resoluti	on of 0.5° x 0.5°
epsilonConvMean2	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Mean of epsilon conditioned on		in and use of 2A			.5°
bbHeightDev2	Float SDS	4	nlath*nlonh	0.0 to 20,000.0	m
Standard deviation of bright bar		norizontal resolu	ution of 0.5° x 0.5°		
stormHeightDev2	Float SDS	4	nlath*nlonh*2	0.0 to 20,000.0	m
Standard deviation of storm hei		ntal resolution	of 0.5° x 0.5°		
sdepthDev2	Float SDS	4	nlath*nlonh	0.0 to 20,000.0	m
Standard deviation of snow dep		ital resolution o	f 0.5° x 0.5°		
sdepthMean2	Float SDS	4	nlath*nlonh	0.0 to 20,000.0	m
Mean of snow depth at a horizo		of 0.5° x 0.5°			
bbZmaxDev2	Float SDS	4	nlath*nlonh	0.0 to 100	dBZ
Mean of maximum reflectivity in		it a horizontal re		0.0 10 100	~- <u>-</u>
bbZmaxMean2	Float SDS	4	nlath*nlonh	0.0 to 100.0	dBZ
Mean of maximum reflectivity in		•		0.0 to 100.0	452
surfRainDev2	Float SDS	4	nlath*nlonh	0.0 to 3000.0	mm h ⁻¹
Standard Deviation of non-zero		•			
surfRainMean2	Float SDS	4	nlath*nlonh	0.0 to 3000.0	mm h ⁻¹
Mean of non-zero near-surface		•		0.0 10 3000.0	
BB Height Mean	Float SDS	4	nlath*nlonh	0.0 to 20,000.0	m
BB Height Mean gives the mont		•			111
Storm Height Mean	Float SDS	4	nlath*nlonh*2	0.0 to 20,000.0	m
Storm Height Mean gives the m		•			
convective rain over 0.5° x 0.5° §	•	or the storm fiel	girt, uncontaitioned alla ti	onditioned for Str	atiroriii ariu
Convective fail over 0.5 x 0.5 }	silu buxes.				

		3A25 Data Structure: Part 4					
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit		
Strat. Zt Mean 2	Float SDS	4	nlath*nlonh*nh3	0.1 to 80	dBZ		
The monthly means of the corre	ected reflectivi	ty of stratiform	rain over 0.5° x 0.5° grid	d boxes.			
Conv. Zm Mean 2	Float SDS	4	nlath*nlonh*nh3	0.1 to 80.0	dBZ		
Conv. Zm Mean 2 gives the mor	nthly means of	the corrected re	eflectivity of convective	rain at the fixed h	eights of 2 km, 4 km,		
km, and path average over 0.5°	x 0.5° grid box	æs.					
Zt Mean 2	Float SDS	4	nlath*nlonh*nh3	0.1 to 80.0	dBZ		
Zt Mean 2 gives the monthly me	eans of the cor	rected reflectivi	ty at the fixed heights o	of 2 km, 4 km, 6 km	, and path average		
over 0.5° x 0.5° grid boxes.							
Strat. Zm Mean 2	Float SDS	4	nlath*nlonh*nh3	-20.0 to 80.0	dBZ		
Strat. Zm Means gives the mon	thly means of t	he measured re	flectivity of stratiform r	ain at the fixed hei	ghts of 2 km, 4 km, 6		
km, and path average over 0.5°	x 0.5° grid box	æs.					
Conv. Zm Mean 2	Float SDS	4	nlath*nlonh*nh3	-20.0 to 80.0	dBZ		
Conv. Zm Mean 2 gives the moi	nthly means of	the measured r	eflectivity of convective	rain at the fixed h	eight levels of 2 km,		
km, 6 km, and path average over	er 0.5° x 0.5° gr	rid boxes.					
Zm Mean 2	Float SDS	4	nlath*nlonh*nh3	-20.0 to 80.0	dBZ		
Zm Mean 2 gives the monthly n	neans of the m	easured reflecti	vity at the fixed height	levels of 2 km, 4 kn	n, 6 km, and path		
average over 0.5° x 0.5° grid bo					·		
Strat. Rain Rate Dev. 2	Float SDS	4	nlath*nlonh*nh3	0.0 to 3000.0	mm h ⁻¹		
Strat. Rain Rate Dev. 2 gives sta	ndard deviatio	ns of non-zero r	ain rates for stratiform	rain over 0.5° x 0.5			
month. The rain rates are deter							
Strat. Rain Rate Mean 2	Float SDS	4	nlath*nlonh*nh3	0.0 to 3000.0	mm h ⁻¹		
Strat. Rain Rate Mean 2 gives m	neans of non-ze	ero rain rates fo	r stratiform rain over 0.	5° x 0.5° boxes for	one month. The rain		
rates are determined in 2A-25 and evaluated at the fixed heights of 2 km, 4 km, 6 km, and path average.							
Conv. Rain Rate Dev. 2	Float SDS	4	nlath*nlonh*nh3	0.0 to 3000.0	mm h ⁻¹		
Conv. Rain Rate Dev. 2 gives sta	andard deviation	ons of non-zero i	rain rates for convective	e rain over 0.5° x 0.			
month. The rain rates are deter	rmined in 2A-2	5 and evaluated	at the fixed heights of 2	2 km, 4 km, 6 km, a	ind path average.		
Conv. Rain Rate Mean 2	Float SDS	4	nlath*nlonh*nh3	0.0 to 3000.0	mm h ⁻¹		
Conv. Rain Rate Mean 2 gives m	neans of non-ze	ero rain rates fo	r convective rain over 0	.5° x 0.5° boxes for	one month. The rain		
rates are determined in 2A-25 a	and evaluated	at the fixed heig	hts of 2 km, 4 km, 6 km	, and path average			
Rain Rate Dev. 2	Float SDS	4	nlath*nlonh*nh3	0.0 to 3000.0	mm h ⁻¹		
Rain Rate Dev. 2 gives standard	deviations of	non-zero rain ra	tes over 0.5 x 0.5 boxes	for one month. Th	e rain rates are		
determined in 2A-25 and evalua	ated at the fixe	ed heights of 2 k	m, 4 km, 6 km, and path	n average.			
Rain Rate Mean 2	Float SDS	4	nlath*nlonh*nh3	0.0 to 3000.0	mm h ⁻¹		
Rain Rate Mean 2 gives means	of non-zero rai	n rates over 0.5	° x 0.5° boxes for one m	onth. The rain rate	s are determined in		
2A-25 and evaluated at the fixe							
0.10.	Char	5.000	·				
GridStructure	Attribute	5,000	-	-	-		
GridStructure gives the specific	ation of the ge	ometry of the g	rids.				
PIAs Corr. Coef.	Float SDS	4	nlat*nlon*nang*3	-1.000 to 1.000	-		
This is the correlation coefficier	nt of three path	n-integrated atte		Oth order PIAs) at	angles of 0, 5, 10 and		
15 for a 5° x 5° box for one mor	•		•	•			
Strat. RR Corr. Coef.	Float SDS	4	nlat*nlon*3	-1.000 to 1.000	-		
These are correlation coefficien	nts of non-zero	rain rates for st	ratiform rain between 3				
rain rates at 2 km vs 4 km, 2 km		, -					
rain rates at 2 km vs 4 km, 2 km Conv. RR Corr. Coef.	Float SDS	4	nlat*nlon*3	-1.000 to 1.000	-		
Conv. RR Corr. Coef.		•					
	nts of non-zero	rain rates for co	onvective rain between	3 heights (i.e., corr			

		3A25 Data S	tructure: Part 5		
Name	Туре	Record Size	Dim Size	Range	Unit
Name	Туре	(bytes)	(# of records)	Kalige	Offic
RR Corr. Coef.	Float SDS	4	nlat*nlon*3	-1.000 to 1.000	-
These are correlation coefficien	ts of non-zero	rain rates betw	een 3 heights (i.e., corre	lation coefficient of r	ain rates at 2 km vs
4 km, 2 km vs 6 km, and 4 km vs	6 km) for a 5°	x 5° box for one	e month. They are calcul	ated under convective	e condition,
stratiform condition or both.					
surfRainH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,000	-
Histogram of near-surface rain r	rate at a horizo	ntal resolution	of 5 x 5		
epsilon0StratH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,000	-
Histogram of epsilon0 condition	ied on stratifor	m rain and use	2A21 SRT at a horizonta	l resolution of 5° x 5°	
epsilon0ConvH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,000	-
Histogram of epsilon0 condition	ied on convect	ive rain and use	2A21 SRT at a horizonta	al resolution of 5° x 5	0
epsilonStratH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,000	-
Histogram of epsilon conditione	ed on stratiforn	n rain and use 2	A21 SRT at a horizontal	resolution of 5° x 5°	
epsilonConvH		2	nlat*nlon*ncat2	0 to 32,000	-
Histogram of epsilon conditione	ed on convectiv	e rain and use 2	2A21 SRT at a horizontal	resolution of 5° x 5°	
bbZmaxH		2	nlat*nlon*ncat2	0 to 32,000	-
Histogram of maximum Zt in bri	ght band at a h	norizontal resolu	ution of 5° x 5°		
NUBF Hist.		2	nlat*nlon*ncat2	0 to 32,767	-
NUBF (Non-Uniform Beam Fillin	_	ne histogram of	the NUBF correction for	Z-factor and rain rat	e of 30 different
categories over 5° x 5° grid boxe		J			
Xi Hist.	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767	-
The Xi Histograms is the histograms	-	ormity parame		•	er a 5° x 5° box for
one month.		, ,		G	
pia2A25H	Integer SDS	2	nlat*nlon*ncat2*nang	0 to 32,767	-
These are histograms of path-at		etermined by 2			r 30 categories over
a 5° x 5° box for one month.		·			_
PIA 0th Hist.	Integer SDS	2	nlat*nlon*ncat2*nang	0 to 32,767	-
PIA 0th Hist. is the histogram of	the 0th order	path-integrated	l attenuation with a hori	zontal resolution of 5	5° x 5°. This
histogram is calculated for 30 ca	ategories at 4 d	lifferent incider	nt angles (0 , 5, 10 and 15	5).	
PIA hb Hist.	lata and CDC	_		0 1 22 767	
These are histograms of path-at	Integer SDS	2	nlat*nlon*ncat2*nang	0 to 32,767	-
	_		~		- k-Z relationship at
4 incidence angles (0, 5, 10 and	ttenuation usin	g an estimate d	lerived from measured re	eflectivity (Zm) and a	- k-Z relationship at
	ttenuation usin 15) for 30 cate	g an estimate d gories over a 5°	lerived from measured re	eflectivity (Zm) and a	- k-Z relationship at -
4 incidence angles (0, 5, 10 and	ttenuation usin 15) for 30 cate Integer SDS	g an estimate d gories over a 5° 2	erived from measured ro 'x 5° box for one month nlat*nlon*ncat2*nang	eflectivity (Zm) and a 0 to 32,767	-
4 incidence angles (0, 5, 10 and PIA srt Hist.	ttenuation usin 15) for 30 cate Integer SDS path-attenuati	g an estimate degories over a 5° 2 ion as determin	erived from measured rown to a service of the control of the contr	eflectivity (Zm) and a 0 to 32,767	-
4 incidence angles (0, 5, 10 and PIA srt Hist. PIA srt Hist. gives histograms of	ttenuation usin 15) for 30 cate Integer SDS path-attenuati ategories over	g an estimate degories over a 5° 2 ion as determin	erived from measured rown to a service of the control of the contr	eflectivity (Zm) and a 0 to 32,767 nce technique (SRT)	-
4 incidence angles (0, 5, 10 and PIA srt Hist. PIA srt Hist. gives histograms of angles (0, 5, 10 and 15) for 30 ca	ttenuation usin 15) for 30 cate Integer SDS path-attenuati ategories over Integer SDS	g an estimate degories over a 5° 2 ion as determin a 5° x 5° box for 2	erived from measured rows to some month of the surface refered to month. Inlat*nlon*ncat2*nanged by the surface refered to month. Inlat*nlon*ncat2*nanged by the surface refered to month.	eflectivity (Zm) and a 0 to 32,767 nce technique (SRT) 0 to 32,767	- at 4 incidence -
4 incidence angles (0, 5, 10 and PIA srt Hist. PIA srt Hist. gives histograms of angles (0, 5, 10 and 15) for 30 capia2a25ssH	ttenuation usin 15) for 30 cate Integer SDS path-attenuati ategories over Integer SDS from 2A25 sub	g an estimate degories over a 5° 2 ion as determin a 5° x 5° box for 2	erived from measured rows to some month of the surface refered to month. Inlat*nlon*ncat2*nanged by the surface refered to month. Inlat*nlon*ncat2*nanged by the surface refered to month.	eflectivity (Zm) and a 0 to 32,767 nce technique (SRT) 0 to 32,767	- at 4 incidence -
4 incidence angles (0, 5, 10 and PIA srt Hist. PIA srt Hist. gives histograms of angles (0, 5, 10 and 15) for 30 capia2a25ssH Histogram in counts of final PIA	ttenuation usin 15) for 30 cate Integer SDS path-attenuati ategories over Integer SDS from 2A25 sub	g an estimate degories over a 5° 2 ion as determin a 5° x 5° box for 2	erived from measured rows to some month of the surface refered to month. Inlat*nlon*ncat2*nanged by the surface refered to month. Inlat*nlon*ncat2*nanged by the surface refered to month.	eflectivity (Zm) and a 0 to 32,767 nce technique (SRT) 0 to 32,767	- at 4 incidence -
4 incidence angles (0, 5, 10 and PIA srt Hist. PIA srt Hist. gives histograms of angles (0, 5, 10 and 15) for 30 capia2a25ssH Histogram in counts of final PIA categories over a 5° x 5° box for	ttenuation usin 15) for 30 cate Integer SDS path-attenuati ategories over Integer SDS from 2A25 sub one month. Integer SDS	g an estimate degories over a 5° 2 ion as determin a 5° x 5° box for 2 osetted 2A25 m	erived from measured read to 2 x 5° box for one month nlat*nlon*ncat2*nang ed by the surface reference month. nlat*nlon*ncat2*nang ethod flag at 5 angles (0, nlat*nlon*ncat2*nang	eflectivity (Zm) and a 0 to 32,767 nce technique (SRT) 0 to 32,767 . 5, 10, 15, and all 49	at 4 incidence - angle bins) for 30
4 incidence angles (0, 5, 10 and PIA srt Hist. PIA srt Hist. gives histograms of angles (0, 5, 10 and 15) for 30 capia2a25ssH Histogram in counts of final PIA categories over a 5° x 5° box for pia0ssH	Ittenuation usin 15) for 30 cate Integer SDS path-attenuati ategories over Integer SDS from 2A25 sub one month. Integer SDS	g an estimate degories over a 5° 2 ion as determin a 5° x 5° box for 2 osetted 2A25 m	erived from measured read to 2 x 5° box for one month nlat*nlon*ncat2*nang ed by the surface reference month. nlat*nlon*ncat2*nang ethod flag at 5 angles (0, nlat*nlon*ncat2*nang	eflectivity (Zm) and a 0 to 32,767 nce technique (SRT) 0 to 32,767 . 5, 10, 15, and all 49	at 4 incidence - angle bins) for 30
4 incidence angles (0, 5, 10 and PIA srt Hist. PIA srt Hist. gives histograms of angles (0, 5, 10 and 15) for 30 capia2a25ssH Histogram in counts of final PIA categories over a 5° x 5° box for pia0ssH Histogram in counts of PIA from	Ittenuation usin 15) for 30 cate Integer SDS path-attenuati ategories over Integer SDS from 2A25 sub one month. Integer SDS	g an estimate degories over a 5° 2 ion as determin a 5° x 5° box for 2 osetted 2A25 m	erived from measured read to 2 x 5° box for one month nlat*nlon*ncat2*nang ed by the surface reference month. nlat*nlon*ncat2*nang ethod flag at 5 angles (0, nlat*nlon*ncat2*nang	eflectivity (Zm) and a 0 to 32,767 nce technique (SRT) 0 to 32,767 , 5, 10, 15, and all 49 0 to 32,767 ngles (0, 5, 10, 15, ar	at 4 incidence - angle bins) for 30
4 incidence angles (0, 5, 10 and PIA srt Hist. PIA srt Hist. gives histograms of angles (0, 5, 10 and 15) for 30 capia2a25ssH Histogram in counts of final PIA categories over a 5° x 5° box for pia0ssH Histogram in counts of PIA from for 30 categories over a 5° x 5° b	Integer SDS	g an estimate degories over a 5° 2 ion as determina 5° x 5° box for 2 osetted 2A25 m 2 thod subsetted onth. 2	lerived from measured read to 2 x 5° box for one month nlat*nlon*ncat2*nang ed by the surface reference month. nlat*nlon*ncat2*nang ethod flag at 5 angles (0, nlat*nlon*ncat2*nang 2A25 method flag at 5 angles to a nlat*nlon*ncat2*nang 2A25 method flag at 5 angles to a nlat*nlon*ncat2*nang 2A25 method flag at 5 angles to a nlat*nlon*ncat2*nang 2A25 method flag at 5 angles to a nlat*nlon*ncat2*nang	eflectivity (Zm) and a 0 to 32,767 nce technique (SRT) 0 to 32,767 15, 10, 15, and all 49 0 to 32,767 ngles (0, 5, 10, 15, ard 0 to 32,767	at 4 incidence angle bins) for 30 and all 49 angle bins)
4 incidence angles (0, 5, 10 and PIA srt Hist. PIA srt Hist. gives histograms of angles (0, 5, 10 and 15) for 30 capia2a25ssH Histogram in counts of final PIA categories over a 5° x 5° box for pia0ssH Histogram in counts of PIA from for 30 categories over a 5° x 5° box piaHbssH	Integer SDS Intege	g an estimate degories over a 5° 2 ion as determina 5° x 5° box for 2 osetted 2A25 m 2 thod subsetted onth. 2	lerived from measured read to 2 x 5° box for one month nlat*nlon*ncat2*nang ed by the surface reference month. nlat*nlon*ncat2*nang ethod flag at 5 angles (0, nlat*nlon*ncat2*nang 2A25 method flag at 5 angles to a nlat*nlon*ncat2*nang 2A25 method flag at 5 angles to a nlat*nlon*ncat2*nang 2A25 method flag at 5 angles to a nlat*nlon*ncat2*nang 2A25 method flag at 5 angles to a nlat*nlon*ncat2*nang	eflectivity (Zm) and a 0 to 32,767 nce technique (SRT) 0 to 32,767 15, 10, 15, and all 49 0 to 32,767 ngles (0, 5, 10, 15, ard 0 to 32,767	at 4 incidence angle bins) for 30 and all 49 angle bins)
4 incidence angles (0, 5, 10 and PIA srt Hist. PIA srt Hist. gives histograms of angles (0, 5, 10 and 15) for 30 capia2a25ssH Histogram in counts of final PIA categories over a 5° x 5° box for pia0ssH Histogram in counts of PIA from for 30 categories over a 5° x 5° by piaHbssH Histogram in counts of PIA from for 30 categories over a 5° x 5° by piaHbssH	Integer SDS Intege	g an estimate degories over a 5° 2 ion as determina 5° x 5° box for 2 osetted 2A25 m 2 thod subsetted onth. 2	lerived from measured read to 2 x 5° box for one month nlat*nlon*ncat2*nang ed by the surface reference month. nlat*nlon*ncat2*nang ethod flag at 5 angles (0, nlat*nlon*ncat2*nang 2A25 method flag at 5 angles to a nlat*nlon*ncat2*nang 2A25 method flag at 5 angles to a nlat*nlon*ncat2*nang 2A25 method flag at 5 angles to a nlat*nlon*ncat2*nang 2A25 method flag at 5 angles to a nlat*nlon*ncat2*nang	eflectivity (Zm) and a 0 to 32,767 nce technique (SRT) 0 to 32,767 0 to 32,767 ngles (0, 5, 10, 15, ard 0 to 32,767 0 to 32,767 0, 5, 10, 15, and all 49	at 4 incidence angle bins) for 30 and all 49 angle bins)
4 incidence angles (0, 5, 10 and PIA srt Hist. PIA srt Hist. gives histograms of angles (0, 5, 10 and 15) for 30 capia2a25ssH Histogram in counts of final PIA categories over a 5° x 5° box for pia0ssH Histogram in counts of PIA from for 30 categories over a 5° x 5° box for piaHbssH Histogram in counts of PIA from categories over a 5° x 5° box for categories over a 5° x 5° box for	Integer SDS path-attenuation usin 15) for 30 cate Integer SDS path-attenuation attegories over Integer SDS from 2A25 subtone month. Integer SDS ofth-order methods for one month integer SDS in HB method subtone month. Integer SDS in HB method subtone month. Integer SDS	g an estimate degories over a 5° 2 ion as determin a 5° x 5° box for 2 osetted 2A25 m 2 thod subsetted onth. 2 ubsetted 2A25 r	lerived from measured rown to the control of the co	eflectivity (Zm) and a 0 to 32,767 nce technique (SRT) 0 to 32,767 0 to 32,767 ngles (0, 5, 10, 15, and all 49 0 to 32,767 0, 5, 10, 15, and all 49	at 4 incidence angle bins) for 30 and all 49 angle bins) angle bins) for 30
4 incidence angles (0, 5, 10 and PIA srt Hist. PIA srt Hist. gives histograms of angles (0, 5, 10 and 15) for 30 capia2a25ssH Histogram in counts of final PIA categories over a 5° x 5° box for pia0ssH Histogram in counts of PIA from for 30 categories over a 5° x 5° box for piaHbssH Histogram in counts of PIA from categories over a 5° x 5° box for piaSrtssH	Integer SDS	g an estimate degories over a 5° 2 ion as determin a 5° x 5° box for 2 osetted 2A25 m 2 thod subsetted onth. 2 ubsetted 2A25 r	lerived from measured rown to the control of the co	eflectivity (Zm) and a 0 to 32,767 nce technique (SRT) 0 to 32,767 0 to 32,767 ngles (0, 5, 10, 15, and all 49 0 to 32,767 0, 5, 10, 15, and all 49	at 4 incidence angle bins) for 30 and all 49 angle bins) angle bins) for 30
4 incidence angles (0, 5, 10 and PIA srt Hist. PIA srt Hist. gives histograms of angles (0, 5, 10 and 15) for 30 capia2a25ssH Histogram in counts of final PIA categories over a 5° x 5° box for pia0ssH Histogram in counts of PIA from for 30 categories over a 5° x 5° box for piaHbssH Histogram in counts of PIA from categories over a 5° x 5° box for piaSrtssH Histogram in counts of PIA from categories over a 5° x 5° box for piaSrtssH	Integer SDS	g an estimate degories over a 5° 2 ion as determin a 5° x 5° box for 2 osetted 2A25 m 2 thod subsetted onth. 2 ubsetted 2A25 r	lerived from measured rown to the control of the co	eflectivity (Zm) and a 0 to 32,767 nce technique (SRT) 0 to 32,767 0 to 32,767 ngles (0, 5, 10, 15, and all 49 0 to 32,767 0, 5, 10, 15, and all 49	at 4 incidence angle bins) for 30 and all 49 angle bins) angle bins) for 30
4 incidence angles (0, 5, 10 and PIA srt Hist. PIA srt Hist. gives histograms of angles (0, 5, 10 and 15) for 30 capia2a25ssH Histogram in counts of final PIA categories over a 5° x 5° box for pia0ssH Histogram in counts of PIA from for 30 categories over a 5° x 5° box for piaHbssH Histogram in counts of PIA from categories over a 5° x 5° box for piaSrtssH Histogram in counts of PIA from categories over a 5° x 5° box for piaSrtssH	Integer SDS On Oth-order medox for one month. Integer SDS	g an estimate degories over a 5° 2 ion as determina 5° x 5° box for 2 esetted 2A25 m 2 thod subsetted enth. 2 ubsetted 2A25 r 2 I 2A25 method	lerived from measured read to 2 x 5° box for one month nlat*nlon*ncat2*nang ed by the surface reference one month. Inlat*nlon*ncat2*nang ethod flag at 5 angles (0, nlat*nlon*ncat2*nang 2A25 method flag at 5 angles (1) nlat*nlon*ncat2*nang nethod flag at 5 angles (1) nlat*nlon*ncat2*nang flag at 5 angles (0, 5, 10, nlat*nlon*ncat2	eflectivity (Zm) and a 0 to 32,767 nce technique (SRT) 0 to 32,767 15, 10, 15, and all 49 0 to 32,767 ngles (0, 5, 10, 15, ard 0 to 32,767 0, 5, 10, 15, and all 49 0 to 32,767 15, and all 49 angle 0 to 32,767	at 4 incidence angle bins) for 30 and all 49 angle bins) angle bins) for 30 angle bins) for 30 bins) for 30

		3A25 Data S	tructure: Part 6		
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit
SurfRainConvH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767	-
listogram in counts of non-z	ero near-surface	rainfall conditio	ned on convective rain	for 30 categories over	a 5° x 5° box for
one month.				_	
_surfRainStratH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767	-
_ Histogram in counts of non-z					er a 5° x 5° box fo
one month.				, and the second se	
e_surfRainConvH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767	
listogram in counts of non-z	_			•	er a 5° x 5° hox f
one month.					ici a com a com i
e_surfRainH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767	_
sarrramm Histogram in counts of non-z	_				
bNadirZmaxH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767	
listogram in counts of maxir	_			· ·	- o month
-	Integer SDS		-		e month.
bNadirWidthH		2	nlat*nlon*ncat2	0 to 32,767	-
listogram in counts of bright		•			
bNadirHH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767	-
listogram in counts of bright					:h
trat. Rain Rate Hist.	Integer SDS	2	nlat*nlon*ncat2*nh1	•	-
hese are histograms of non-			n rain at five heights (2,	, 4, 6, 10 and 15 km) a	nd path-average
20 categories over a 5° x 5° b	ox for one month	۱.			
Conv. Rain Rate Hist.	Integer SDS	2	nlat*nlon*ncat2*nh1	0 to 32,767	-
These are histograms of non-	zero rain rate pix	els for convecti	ve rain at five heights (2	, 4, 6, 10 and 15 km)	and path-average
or 20 categories over a 5° x !	5° box for one mo	onth.			
Rain Rate Hist.	Integer SDS	2	nlat*nlon*ncat2*nh1	0 to 32,767	-
These are histograms of non-	zero rain rate pix	els at five heigh	ts (2, 4, 6, 10 and 15 km	n) and path-average for	or 20 categories
over a 5° x 5° box for one mo					_
Strat. Zt Hist.	Integer SDS	2	nlat*nlon*ncat2*nh1	0 to 32,767	-
Γhe Stratiform Zt Histograms	_			•	e heights (2, 4, 6
and 15 km) and path-average	_		· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , ,	
Conv. Zt Hist.	Integer SDS	2	nlat*nlon*ncat2*nh1	0 to 32,767	_
The Convective Zt Histogram	_			•	ve heights 12 1
LO and 15 km) and path-aver	_			rective rain pixels at it	ve fieigitts (2, 4,
<u>'t Hist.</u>	Integer SDS		nlat*nlon*ncat2*nh1	0 to 32,767	
The Zt Histograms are histog	_			· ·	- and 1E km) and
		•	•	ve neights (2, 4, 6, 10	and 15 km, and
oath-average for 20 categorie				0.1. 22.767	
Strat. Zm Hist.	Integer SDS	2	nlat*nlon*ncat2*nh1	0 to 32,767	-
The Stratiform Zm Histogram	_			rain pixels at five heig	ghts (2, 4, 6, 10 a
.5 km) and path-average for					
Conv. Zm Hist.	Integer SDS	2	nlat*nlon*ncat2*nh1	0 to 32,767	-
The Convective Zm Histogran	_			e rain pixels at five he	eights (2, 4, 6, 10
and 15 km) and path-average		s over a 5° x 5° l			
'm Hist.	Integer SDS	2	nlat*nlon*ncat2*nh1	0 to 32,767	
The Zm Histograms are histog	grams of measure	ed reflectivities	of rain pixels at five heig	ghts (2, 4, 6, 10 and 1	km) and path-
verage for 20 categories over	er a 5° x 5° box i f	or one month.			
Snow-ice Layer Hist.	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767	-
=	_	laver for 30 car	tegories over a 5° x 5° b	•	e denth of snow-
These are mistograms of the t	acpui oi silow-ice	s layer for 50 ca		071 101 0110 11101111111 1111	c acpen or snow
ayer is defined as the differe					e depth of show

		3A25 Data S	tructure: Part 7		
Nama	T	Record Size	Dim Size	B	1124
Name	Туре	(bytes)	(# of records)	Range	Unit
BB Height Hist.	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767	-
These are histograms of the brig	ght-band heigh	ts for 30 catego	ries over a 5 x 5 box for o	ne month, given t	that the bright band is
detected.					
Strat. Storm Height Hist.	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767	-
These are histograms of the 'eff	ective' storm h	eights for strati	form rain for 30 categorie	es over a 5° x 5° b	ox for one month.
Conv. Storm Height Hist.	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767	-
These are histograms of the 'eff	ective' storm h	eights for conv	ective rain for 30 categori	ies over a 5° x 5° b	ox for one month.
Storm Height Hist.	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767	-
These are histograms of the 'eff	ective' storm h	eights for 30 ca	tegories over a 5° x 5° bo	x for one month.	
epsilon0StratPix1	Integer SDS	4	nlat*nlon	0 to 32,767	-
Counts of epsilon0 conditioned					solution of 5° x 5°
epsilon0ConvPix1	Integer SDS	4	nlat*nlon	0 to 32,767	-
Counts of epsilon0 conditioned		rain and use of	2A21 SRT at the 3 heights	at a horizontal re	esolution of 5° x 5°
epsilonStratPix1	U	2	nlat*nlon	0 to 32,767	-
Counts of epsilon conditioned o					olution of 5° x 5°
epsilonConvPix1	U	2	nlat*nlon	0 to 32,767	-
Counts of epsilon conditioned o					olution of 5° x 5°
convCCoefPix	U	2	nlat*nlon*3	0 to 32,767	-
Counts for correlation coefficier		litioned on conv		ts at a horizontal	resolution of 5° x 5°
stratCCoefPix	Integer SDS	2	nlat*nlon*3	0 to 32,767	-
Counts for correlation coefficier					esolution of 5° x 5°
rainCCoefPix		2	nlat*nlon*3	0 to 32,767	-
Counts for correlation coefficier					
pia2a25ssPix	U	2	nlat*nlon	0 to 32,767	-
Counts of final PIA from 2A25 fo		ita where the 2 <i>i</i>	A25 method flag has beer	n set (see 2A25/3 <i>A</i>	N25 algorithm users
guide) at a horizontal resolution					
pia0ssPix	Integer SDS		nlat*nlon	0 to 32,767	-
Counts of PIA using 0th-order m			re the 2A25 method flag	has been set (see	2A25/3A25 algorithm
users guide) at a horizontal reso					
piaHbssPix	Integer SDS		nlat*nlon	0 to 32,767	-
Counts of PIA using HB method		data where the	2A25 method flag has be	en set (see 2A25/3	3A25 algorithm users
guide) at a horizontal resolution			l ode l		
piaSrtssPix	Integer SDS		nlat*nlon	0 to 32,767	- /2 A 2 E - a le Le - Le L
Counts of PIA using SRT method		data where the	ZAZ5 method flag has be	een set (see 2A25/	3A25 algorithm users
guide) at a horizontal resolution		1	nlat*nlan*2	0 to 2 000 000	
rzStratPix1	Integer SDS	4	nlat*nlon*2	0 to 2,000,000	-
The number of R-Z coefficient p	ixel counts for	su autorm rain	near-surrace and 2km hei	giits, at a norizon	tai resolution of 5 X
rzConvPix1	Integer SDS	4	nlat*nlon*2	0 to 2,000,000	
The number of R-Z coefficient p	_				ntal resolution of 5° v
5°	inci courits for	convective raili	near-surface and zkill fie	igitis, at a morizon	ital resolution of 5 X
rzPix1	Integer SDS	4	nlat*nlon*2	0 to 2,000,000	_
The number of R-Z coefficient p	_				f 5° x 5°
e_surfRainStratPix1	Integer SDS	4	nlat*nlon	0 to 2,000,000	-
The number of non-zero estima	_	•			al resolution of 5° x 5°
e_surfRainConvPix1	Integer SDS	4	nlat*nlon	0 to 2,000,000	-
The number of non-zero estima	_	-		, ,	tal resolution of 5° x
5°		į. 1. 11 m. 100 0.		,	

		3A25 Data S	tructure: Part 8		
Nome	Turne	Record Size	Dim Size	Danas	l luit
Name	Туре	(bytes)	(# of records)	Range	Unit
e_surfRainPix1	Integer SDS	4	nlat*nlon	0 to 2,000,000	-
The number of non-zero estimat	ted surface rai	n pixel counts a	t a horizontal resolution o	of 5° x 5°	
surfRainStratPix1	Integer SDS	2	nlat*nlon	0 to 32,767	-
Counts of Near-surface rain fall of	conditioned or	n stratiform rain	at a horizontal resolution	n of 5° x 5°	
surfRainConvPix1	Integer SDS	2	nlat*nlon	0 to 32,767	-
Counts of Near-surface rain fall of	conditioned or	n convective rai	n at a horizontal resolutio	n of 5° x 5°	
surfRainPix1	Integer SDS	4	nlat*nlon	0 to 2,000,000	-
Near-surface rain counts at a ho	rizontal resolu	tion of 5° x 5°			
Rain Angle Pixel Number 1	Integer SDS	2	nlat*nlon*nang	0 to 30,000	-
Rain Angle Pixel Number 1 is the	total number	of non-zero rai	n rate pixels over each 5°	x 5° latitude-longi	tude grid box for a
month. This parameter is accum				-	•
Total Angle Pixel Number 1	Integer SDS		nlat*nlon*nang	0 to 30,000	-
Total Angle Pixel Number 1 is the	_			tude grid box for a	month. This
parameter is accumulated at fou				J	
Strat. Rain Pixel Number 1	Integer SDS		nlat*nlon*nh1	0 to 2,000,000	-
The Stratiform Rain Pixel Number	-		rain rate pixels for stratif	form rain at the fix	ed heights of 2, 4, 6,
10 and 15 km and for path-avera					G , , , ,
Conv. Rain Pixel Number 1	Integer SDS		nlat*nlon*nh1	0 to 2,000,000	-
The number of non-zero rain rat	_				nd for path-average
over 5° x 5° boxes for one month	•			-,	
Rain Pixel Number 1		4	nlat*nlon*nh1	0 to 2,000,000	-
The number of non-zero rain rat	J				over 5° x 5° boxes
for one month	ie pineis at tire	integrite of	, ., .,	a 101 patit a 101 ago	ordi o no bones
bbNadirPix1	Integer SDS	4	nlat*nlon	0 to 2,000,000	-
The number of bright band nadi	_			,,	
Bright Band Pixel Number 1	Integer SDS	4	nlat*nlon	0 to 2,000,000	-
The number of bright band cour	_	° x 5° box for or		, , , , , , , , , , , , , , , , , , , ,	
Total Pixel Number 1	Integer SDS	4	nlat*nlon	0 to 2,000,000	-
The number of total pixels over	_			,,	
rzStratB1	Float SDS	4	nlat*nlon*2	0.0 to 1.0	mm h ⁻¹
The B parameter in rainfall-refle		-			
Computed for near-surface and	=		_	, 2 pans contaction	ca on strathorn rain.
rzStratA1			nlat*nlon*2	0.0 to 1.0	mm h ⁻¹
The A parameter in rainfall-refle					
Computed for near-surface and	•		_	, = pa 5 50114111011	
rzConvB1	Float SDS	4	nlat*nlon*2	0.0 to 1.0	mm h ⁻¹
The B parameter in rainfall-refle		•			
rain. Computed for near-surface	•		_	, _ pa 5 55114161611	JJIIVCOUVC
rzConvA1	Float SDS	4	nlat*nlon*2	0.0 to 1.0	mm h ⁻¹
The A parameter in rainfall-refle		•			
rain. Computed for near-surface	•		_	, = pairs condition	ca on convective
rzB1	Float SDS	4	nlat*nlon*2	0.0 to 1.0	mm h ⁻¹
The B parameter in rainfall-refle		•			
and 2km, at a horizontal resoluti	-	,,_ 5 110/11	many or motantaneous N	, = pans. compate	.a for ficul surface
rzA1	Float SDS	4	nlat*nlon*2	0.0 to 1.0	mm h ⁻¹
The A parameter in rainfall-refle		•			
and 2km, at a horizontal resoluti	· ·	I K - AL' D IIUIII	inting of instantaneous R	, 2 pairs. Compute	a for fiear-surface
e_surfRainDev1	Float SDS	4	nlat*nlon	0.0 to 400.0	mm h ⁻¹
-		•			
Standard deviation of non-zero	estimated surf	ace rain below (ciutter conditioned on str	atiioriii rain at a re	esolution of 5 X 5

3A25 Data Structure: Part 9					
Name	Туре	Record Size	Dim Size	Range	Unit
		(bytes)	(# of records)	_	
e_surfRainStratMean1	Float SDS	4	nlat*nlon	0.0 to 400.0	mm h ⁻¹
Mean of non-zero estimated sur	face rain belov	w clutter (See 2	A25 algorithm user guide) conditioned on s	tratiform rain at a
horizontal resolution of 5° x 5°					1
e_surfRainConvDev1	Float SDS	4	nlat*nlon	0.0 to 400.0	mm h ⁻¹
Standard deviation of non-zero			clutter (See 2A25 algorith	m user guide) con	ditioned on
convective rain at a horizontal re					1
e_surfRainConvMean1	Float SDS	4	nlat*nlon	0.0 to 400.0	mm h ⁻¹
Mean of non-zero estimated sur	face rain belov	w clutter (See 2	A25 algorithm user guide) conditioned on c	onvective rain at a
horizontal resolution of 5° x 5°					1
e_surfRainDev1	Float SDS	4	nlat*nlon	0.0 to 400.0	mm h ⁻¹
Standard deviation of non-zero	estimated surf	ace rain below	clutter (See 2A25 algorith	m user guide) at a	horizontal resolution
of 5° x 5°					1
e_surfRainMean1	Float SDS	4	nlat*nlon	0.0 to 400.0	mm h ⁻¹
Mean of non-zero estimated sur					solution of 5° x 5°
sdepthDev1	Float SDS	4	nlat*nlon	0.0 to 20,000.0	m
Standard deviation of snow dep			f 5° x 5°		
sdepthMean1	Float SDS	4	nlat*nlon	0.0 to 20,000.0	m
Mean of snow depth at a horizo	ntal resolution				
bbZmaxDev1	Float SDS	4	nlat*nlon	0.0 to 100.0	dBZ
Standard Deviation of maximum		bright band at a	a horizontal resolution of	5° x 5°	
bbZmaxMean1	Float SDS	4	nlat*nlon	0.0 to 100.0	dBZ
Mean of maximum reflectivity in		it a horizontal re	esolution of 5° x 5°		
surfRainStratDev1	Float SDS	4	nlat*nlon	0.0 to 3000.0	mm h ⁻¹
Standard deviation of non-zero	near-surface ra	ain rate condition	oned on stratiform rain at	a horizontal resol	
surfRainStratMean1	Float SDS	4	nlat*nlon	0.0 to 3000.0	mm h ⁻¹
Mean of non-zero near-surface	rain rate condi	tioned on strati	form rain at a horizontal	resolution of 5° x 5	
surfRainConvDev1	Float SDS	4	nlat*nlon	0.0 to 3000.0	mm h ⁻¹
Standard deviation of non-zero		ain rate condition	oned on convective rain a	t a horizontal reso	
surfRainConvMean1	Float SDS	4	nlat*nlon	0.0 to 3000.0	mm h ⁻¹
Mean of non-zero near-surface	rain rate condi	tioned on conve	ective rain at a horizontal	resolution of 5° x	
surfRainDev1	Float SDS	4	nlat*nlon	0.0 to 3000.0	mm h ⁻¹
Standard deviation of non-zero					
surfRainMean1	Float SDS	4	nlat*nlon	0.0 to 3000.0	mm h ⁻¹
Mean of non-zero near-surface		orizontal resolu			
epsilon0StratDev1	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Standard deviation of epsilon0 of					ion of 5° x 5°
epsilon0StratMean1	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Mean of epsilon0 conditioned o		in and use of 2/			
epsilon0ConvDev1	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Standard deviation of epsilon0 of	onditioned on	convective rain	and use of 2A21 SRT at a	horizontal resolu	tion of 5° x 5°
epsilon0ConvMean1	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Mean of epsilon0 conditioned o		ain and use of 2	A21 SRT at a horizontal re	esolution of 5° x 5°	
epsilonStratDev1	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Standard deviation of epsilon co		stratiform rain a	nd use of 2A21 SRT at a h	orizontal resolutio	on of 5° x 5°
epsilonStratMean1	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Mean of epsilon conditioned on	stratiform rain	n and use of 2A2	21 SRT at a horizontal reso	olution of 5° x 5°	
epsilonConvDev1	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Standard deviation of epsilon co	nditioned on a	convective rain	and use of 2A21 SRT at a	horizontal resoluti	on of 5° x 5°

3A25 Data Structure: Part 10					
Name	Type	Record Size	Dim Size	Pango	Unit
Name	Type	(bytes)	(# of records)	Range	Onit
epsilonConvMean1	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Mean of epsilon conditioned on	convective rai	n and use of 2A	21 SRT at a horizontal res	solution of 5° x 5°	
bbNadirZmaxDev1	Float SDS	4	nlat*nlon	0.0 to 70.0	dBZ
Standard deviation of maximum	Z in bright bai	nd from nadir ra	ay at a horizontal resolution	on of 5° x 5°	
bbNadirZmaxMean1	Float SDS	4	nlat*nlon	0.0 to 70.0	dBZ
Mean of maximum Z in bright ba	and from nadir	ray at a horizor	ntal resolution of 5° x 5°		
bbNadirWidthDev1	Float SDS	4	nlat*nlon	0.0 to 10,000	m
Standard deviation of bright bar	nd from nadir r	ay at a horizont	al resolution of 5° x 5°	•	
bbNadirWidthMean1	Float SDS	4	nlat*nlon	0.0 to 10,000	m
Width of bright band from nadir		ontal resolution	of 5° x 5°		
bbNadirHtDev1	Float SDS	4	nlat*nlon	0.0 to 20,000	m
Standard deviation of bright bar		av at a horizont			
bbNadirHtMean1	Float SDS	4	nlat*nlon	0.0 to 20,000	m
Height of bright band from nadi		•		0.0 (0 20,000	
BB Height Dev.	Float SDS	4	nlat*nlon	0.0 to 20,000	m
Monthly deviation of the bright		•		0.0 to 20,000	
BB Height Mean	Float SDS	4	nlat*nlon	0.0 to 20,000	m
Monthly means of the bright ba		•		0.0 to 20,000	****
NUBF Correction Factor Dev.	Float SDS	4	nlat*nlon	0.0 to 2.0	_
Monthly standard deviation of t		•			of 5° v 5°
NUBF Correction Factor Mean		4	nlat*nlon	0.0 to 2.0	ЛЭХЭ
Monthly mean of NUBF correcti					-
Xi Dev.	Float SDS	4	nlat*nlon	0.0 to 99.0	
Monthly standard deviation of t		•			horizontal recolution
of 5° x 5°	ne nonzontari	ion-uninormity p	parameter of the familier	u willilli a ray at a	nonzoniai resolution
Xi Mean	Float SDS	4	nlat*nlon	0.0 to 99.0	-
Monthly means of the horizonta		•			esolution of 5° v 5°
Storm Height Dev.	Float SDS	4	nlat*nlon*3	0.0 to 20,000.0	m
Standard deviation of the storm		-		•	***
Storm Height Mean	Float SDS	4	nlat*nlon*3	0.0 to 20,000.0	m
Monthly mean of the storm heigh		•		•	
pia2a25ssDev	Float SDS	4	nlat*nlon	0.0 to 100.0	dB
1 -		•			
Standard deviation of final PIA (
method flag has been set (see 2			•		
pia2a25ssMean	Float SDS	4	nlat*nlon	0.0 to 100.0	dB
Mean of final PIA (path-integrat					s method flag has
been set (see 2A25/3A25 algorit					-In
pia0ssMean	Float SDS	4	nlat*nlon	0.0 to 100.0	dB
Standard deviation of PIA (path-	_				
method flag has been set (see 2			<u> </u>		
pia0ssMean	Float SDS	4	nlat*nlon	0.0 to 100.0	dB
Mean of PIA (path-integrated at					e 2A25 method flag
has been set (see 2A25/3A25 alg		•			
piaHbssDev	Float SDS	4	nlat*nlon	0.0 to 100.0	dB
Standard deviation of PIA (path-	_				ere the 2A25 method
flag has been set (see 2A25/3A2					
piaHbssMean	Float SDS	4	nlat*nlon	0.0 to 100.0	dB
Mean of PIA (path-integrated at		• •			method flag has
been set (see 2A25/3A25 algorit	thm users guid	e). It has a horiz	contal resolution of 5° x 5°	•	

				1
Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit
Float SDS	4	nlat*nlon	0.0 to 100.0	dB
integrated att	enuation, one-w	vay) for SRT for a sub-se	t of data where the	e 2A25 method flag
				_
Float SDS	4	nlat*nlon	0.0 to 100.0	dB
tenuation, on	e-way) for SRT fo	or a sub-set of data whe	re the 2A25 metho	od flag has been set
guide). It has	a horizontal res	olution of 5° x 5°.		_
Float SDS	4	nlat*nlon*nang	0.0 to 100.0	dB
A25 path-inte	grated attenuat	ion calculated at four fix	ked incidence angle	es. It has a horizontal
·				
Float SDS	4	nlat*nlon*nang	0.0 to 100.0	dB
	nuation calculate		e angles. It has a h	orizontal resolution of
Float SDS	4	nlat*nlon*nang	0.0 to 100.0	dB
	oath-integrated			nce angles. It has a
Float SDS	4	nlat*nlon*nang	0.0 to 100.0	dB
				t nas a nonzontal
		_		dB
IB path-integr	ated attenuatioi	n calculated at four fixed	d incidence angles.	It has a horizontal
				dB
grated attenua	ation calculated	at four fixed incidence a	angles. It has a hori	zontal resolution of
	·			dB
RT path-integ	rated attenuatio	on calculated at four fixe	ed incidence angles	. It has a horizontal
	· · · · · ·	<u> </u>		dB
	nnique) path-inte	egrated attenuation cald	culated at four fixe	d incidence angles. It
	· ·			dBZ
	•			-
d those at the	fixed heights of		e calculated using	data from 2A-25.
Elast CDC	1			
Float SDS	4	nlat*nlon*nh1	0.1 to 80.0	dBZ
dar reflectivity	for stratiform r	ain at a horizontal resol	ution of 5° x 5°. The	
dar reflectivity	for stratiform r		ution of 5° x 5°. The	
dar reflectivity	for stratiform r	ain at a horizontal resol	ution of 5° x 5°. The	
dar reflectivity of 2, 4, 6, 10 au Float SDS	r for stratiform rand 15 km are cal	ain at a horizontal resolo culated using data from	ution of 5° x 5°. The 2A-25. 0.0 to 80.0	e path-averaged mea
dar reflectivity of 2, 4, 6, 10 au Float SDS corrected rada	r for stratiform rond 15 km are cal 4 ar reflectivity for	ain at a horizontal resolo culated using data from nlat*nlon*nh1	ution of 5° x 5°. The 2A-25. 0.0 to 80.0 rizontal resolution	e path-averaged mea dBZ of 5° x 5°. The path-
dar reflectivity of 2, 4, 6, 10 au Float SDS corrected rada	r for stratiform rond 15 km are cal 4 ar reflectivity for	ain at a horizontal resolo culated using data from nlat*nlon*nh1 r convective rain at a ho	ution of 5° x 5°. The 2A-25. 0.0 to 80.0 rizontal resolution	e path-averaged mea dBZ of 5° x 5°. The path-
dar reflectivity of 2, 4, 6, 10 an Float SDS corrected rada d those at the Float SDS	for stratiform rand 15 km are cald 4 ar reflectivity for fixed heights of 4	ain at a horizontal resolo culated using data from nlat*nlon*nh1 r convective rain at a ho 2, 4, 6, 10 and 15km ar	ution of 5° x 5°. The 2A-25. 0.0 to 80.0 rizontal resolution e calculated using 0.1 to 80.0	dBZ of 5° x 5°. The pathdata from 2A-25. dBZ
dar reflectivity of 2, 4, 6, 10 an Float SDS corrected rade d those at the Float SDS dar reflectivity	of for stratiform rand 15 km are cal 4 ar reflectivity for fixed heights of 4 for convective r	ain at a horizontal resoluculated using data from nlat*nlon*nh1 rconvective rain at a ho 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1	ution of 5° x 5°. The 2A-25. 0.0 to 80.0 rizontal resolution calculated using 0.1 to 80.0 ution of 5° x 5°. Th	dBZ of 5° x 5°. The pathdata from 2A-25. dBZ
dar reflectivity of 2, 4, 6, 10 an Float SDS corrected rade d those at the Float SDS dar reflectivity	of for stratiform rand 15 km are cal 4 ar reflectivity for fixed heights of 4 for convective r	ain at a horizontal resoluculated using data from nlat*nlon*nh1 resoluce rain at a ho 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1 ain at a horizontal resoluce re	ution of 5° x 5°. The 2A-25. 0.0 to 80.0 rizontal resolution calculated using 0.1 to 80.0 ution of 5° x 5°. Th	dBZ of 5° x 5°. The pathdata from 2A-25. dBZ
dar reflectivity of 2, 4, 6, 10 an Float SDS corrected rada d those at the Float SDS dar reflectivity of 2, 4, 6, 10 an Float SDS	of for stratiform rand 15 km are cald 4 ar reflectivity for fixed heights of 4 for convective rand 15 km are cald 4	ain at a horizontal resoluculated using data from nlat*nlon*nh1 reconvective rain at a ho 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1 rain at a horizontal resolulated using data from	ution of 5° x 5°. The 2A-25. 0.0 to 80.0 rizontal resolution e calculated using 0.1 to 80.0 ution of 5° x 5°. The 2A-25. 0.0 to 80.0	dBZ of 5° x 5°. The pathdata from 2A-25. dBZ e path-averaged med
dar reflectivity of 2, 4, 6, 10 an Float SDS corrected rada d those at the Float SDS dar reflectivity of 2, 4, 6, 10 an Float SDS	for stratiform rand 15 km are cald 4 ar reflectivity for 4 for convective rand 15 km are cald 4 ar reflectivity factors.	ain at a horizontal resoluculated using data from nlat*nlon*nh1 reconvective rain at a ho 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1 ain at a horizontal resoluculated using data from nlat*nlon*nh1	ution of 5° x 5°. The 2A-25. 0.0 to 80.0 rizontal resolution e calculated using 0.1 to 80.0 ution of 5° x 5°. The 2A-25. 0.0 to 80.0	dBZ of 5° x 5°. The pathdata from 2A-25. dBZ e path-averaged mea
dar reflectivity of 2, 4, 6, 10 an Float SDS corrected rada d those at the Float SDS dar reflectivity of 2, 4, 6, 10 an Float SDS corrected rada	for stratiform rand 15 km are cald 4 ar reflectivity for 4 for convective rand 15 km are cald 4 ar reflectivity factors	ain at a horizontal resoluculated using data from nlat*nlon*nh1 reconvective rain at a ho 2, 4, 6, 10 and 15 km ar nlat*nlon*nh1 ain at a horizontal resoluculated using data from nlat*nlon*nh1	ution of 5° x 5°. The 2A-25. 0.0 to 80.0 rizontal resolution e calculated using 0.1 to 80.0 ution of 5° x 5°. The 2A-25. 0.0 to 80.0	dBZ of 5° x 5°. The pathdata from 2A-25. dBZ e path-averaged med
	Float SDS tenuation, one guide). It has Float SDS tenuation one guide). It has Float SDS tegrated attent Float SDS tegrated attent Float SDS r path-integrat Float SDS T path-integrated attention T path-integrat	Float SDS 4 regrated attenuation calculated Float SDS 4 reference technique) path-intex x 5°. Float SDS 4 reference technique) path-intex x 5°. Float SDS 4 reference technique) path-intex x 5°. Float SDS 4 reference technique path-intex x 5°.	Float SDS 4 nlat*nlon*nang tegrated attenuation calculated attenuation calculated at four fixed sDS 4 nlat*nlon*nang tegrated attenuation calculated at four fixed sDS 4 nlat*nlon*nang tegrated attenuation calculated at four fixed sDS 4 nlat*nlon*nang tegrated attenuation calculated at four fixed sDS 4 nlat*nlon*nang tegrated attenuation calculated at four fixed sDS 4 nlat*nlon*nang tegrated attenuation calculated at four fixed sDS 4 nlat*nlon*nang tegrated attenuation calculated at four fixed sDS 4 nlat*nlon*nang tegrated attenuation calculated at four fixed sDS 4 nlat*nlon*nang tegrated attenuation calculated at four fixed sDS 4 nlat*nlon*nang spath-integrated attenuation calculated at four fixed sDS 4 nlat*nlon*nang spath-integrated attenuation calculated at four fixed sDS 4 nlat*nlon*nang spath-integrated attenuation calculated at four fixed spath-integrated spath-integrated spath-integrated spat	Float SDS 4 nlat*nlon*nang 0.0 to 100.0 Float

	3A25 Data Structure: Part 12				
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit
Strat. Zm Dev. 1	Float SDS	4	nlat*nlon*nh1	0.0 to 100.0	dBZ
Monthly standard deviations of	measured rada	ar reflectivity fo	r stratiform rain at a hori:	zontal resolution	of 5° x 5°. The path-
averaged standard deviation and	d those at the	fixed heights of	2, 4, 6, 10 and 15 km are	calculated using	data from 1C-21.
Strat. Zm Mean 1	Float SDS	4	nlat*nlon*nh1	0.0 to 100.0	dBZ
Monthly means of measured rad	dar reflectivity	for stratiform r	ain at a horizontal resolut	ion of 5° x 5°. The	e path-averaged mean
and means at the fixed heights of	of 2, 4, 6, 10 an	ıd 15 km are cal		LC-21.	
Conv. Zm Dev. 1	Float SDS	4	nlat*nlon*nh1	0.0 to 100.0	dBZ
Monthly standard deviations of	measured rada	ar reflectivity fo	r convective rain at a hor	izontal resolution	of 5° x 5°. The path-
averaged standard deviation and	d those at the	fixed heights of	2, 4, 6, 10 and 15 km are	calculated using	data from 1C-21.
Conv. Zm Mean 1	Float SDS	4	nlat*nlon*nh1	0.0 to 100.0	dBZ
Monthly means of measured rad	dar reflectivity	for convective	rain at a horizontal resolu	tion of 5° x 5°. Th	e path-averaged
mean and means at the fixed he	eights of 2, 4, 6	, 10 and 15 km	are calculated using data	from 1C-21.	
Zm Dev.1	Float SDS	4	nlat*nlon*nh1	0.0 to 100.0	dBZ
Monthly standard deviations of	measured rada	ar reflectivity at	the fixed heights of 2, 4,	6, 10 and 15 km a	and for path-average
over 5° x 5° boxes using data fro	om 1C-21				
Zm Mean 1	Float SDS	4	nlat*nlon*nh1	0.0 to 100.0	dBZ
Monthly means of measured rad	dar reflectivity	at the fixed hei	ghts of 2, 4, 6, 10 and 15	km and for path-a	overage over 5° x 5°
boxes using data from 1C-21					
Strat. Rain Rates Dev. 1	Float SDS	4	nlat*nlon*nh1	0.0 to 3000.0	mm h ⁻¹
Monthly standard deviations of	non-zero rain ı	rates for stratifo	orm rain over 5° x 5° boxe	S	
Strat. Rain Rates Mean 1	Float SDS	4	nlat*nlon*nh1	0.0 to 3000.0	mm h ⁻¹
Monthly means of non-zero rain	rates for strat	iform rain over	5° x 5° boxes		
Conv. Rain Rates Dev. 1	Float SDS	4	nlat*nlon*nh1	0.0 to 3000.0	mm h ⁻¹
Monthly standard deviations of		rates for convec	ctive rain over 5° x 5° boxe	es	
Conv. Rain Rate Mean 1	Float SDS	4	nlat*nlon*nh1	0.0 to 3000.0	mm h ⁻¹
Monthly means of non-zero rain		ective rain over	r 5° x 5° boxes		
Rain Rates Dev. 1	Float SDS	4	nlat*nlon*nh1	0.0 to 3000.0	mm h ⁻¹
Monthly standard deviations of	non-zero rain ı	rates over 5° x 5			
Rain Rate Mean 1	Float SDS	4	nlat*nlon*nh1	0.0 to 3000.0	mm h ⁻¹
Monthly means of non-zero rain		x 5° boxes			
GridStructure	Char Att.	5,000	-	-	-
GridStructure gives the specification	ation of the geo	metry of the g	rids.		
PS Metadata	Char Att.	10,000	-	-	-
Product Specific Metadata	Char Att.		-	-	-
	Char Att.	10,000	-	-	-

Notes:

- The "scale by" column was omitted because none of the 3A25 variables are scaled.
- Missing data are given a value of -9999.
- The *nlat* and *nlon* dimensions refer to the 5° latitude and longitudes, respectively, whereas the *nlath* and *nlonh* dimensions refer to the 0.5° latitude and longitude dimensions, respectively.
- The dimension *nh1* refers to the number of fixed heights about the earth ellipsoid, in order: 2, 4, 6, 10, and 15 km.
- The dimension *nh3* refers to the number of fixed heights above the earth ellipsoid, in order: 2, 4, and 6 km.
- The dimension nang refers to the number of crossed incidence angles at 0, 5°, 10°, and 15°, respectively.
- The dimension ncat2 refers to the second number of categories for histograms (a total of 30).

3A26: Surface Rain Total

Tomporal Coverage	Start Date: 1997-12-01
Temporal Coverage	Stop Date: 2015-03-31
Geographic Coverage	Latitude: 40°S – 40°N
	Longitude: 180°W – 180°E
Temporal Resolution	Monthly
Horizontal Resolution	5° x 5°; nlat = 16, nlon = 72
Average File Size	≈ 6 MB compressed

		3A26 Data	Format Structure		
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit
ECS Core Metadata	Char Att.	10,000	-	-	-
ECS core metadata					
PS Metadata	Char Att.	10,000	-	-	-
Product specific metadata					
GridStructure	Char Att.	5,000	-	-	-
GridStructure gives the specification	ation of the geo	metry of the	e grids.		
Total Counts	Integer SDS	4	nlat*nlon	0 - 2,147,483,647	-
Total number of counts (measu	rements) per m	onth at eacl	h 5° x 5° boxes.		
Rain Counts	Integer SDS	4	nlat*nlon*nh2	0 - 2,147,483,647	-
Total number of rain counts (me	easurements) pe	er month at	each 5° x 5° boxes. This is compu	uted at 2km, 4km, 6km,	and for
the path-average.					
Zero Order pDf	Integer SDS	4	nlat*nlon*ncat3*nh2*nthrsh	1 – 2,147,483,647	-
Probability distribution function	ı (cumulative) in	counts of t	he zeroth order rain rate estimat	e at each 5° x 5° boxes	. The pDf
is computed at 2km, 4km, 6km,	and for the patl	h-average.			
HB pDf	Integer SDS	4	nlat*nlon*ncat3*nh2*nthrsh	1 – 2,147,483,647	-
Probability distribution function	ı (cumulative) in	counts of t	he Hitschfield-Bordan (HB) rain r	ate estimate at each 5°	x 5°
boxes. The pDf is computed at 2	2km, 4km, 6km,	and for the	path-average.		
pDf2A25	Float SDS	4	nlat*nlon*ncat3*nh2*nthrsh	1 – 2,147,483,647	-
Probability distribution function	ı (cumulative) in	counts of t	he Surface Reference Technique	(SRT) rain rate estimat	e at each
5° x 5° boxes. The pDf is comput	ted at 2km, 4km	, 6km, and	for the path-average.		
Zero Order Fit	Float SDS	4	nlat*nlon*nh2*3*nthrsh	1 – 2,147,483,647	-
The mean, variance, and probab	oility of rain para	ameters for	the log-normal model obtained	from the zeroth order p	Df.
Fitting parameters are given at	2km, 4km, 6km,	and for the	e path-average. In addition, 5 thre	esholds are used.	
HB Fit	Float SDS	4	nlat*nlon*nh2*3*nthrsh	-	-
The 3 fitting parameters for the	log-normal mod	del obtaine	d from the HB pDf. Fitting parame	eters are given at 2km,	4km,
6km, and for the path-average.					
fit2A25	Float SDS	4	nlat*nlon*nh2*3*nthrsh	-	-
The 3 fitting parameters for the	log-normal mod	del obtaine	d from the SRT pDf. Fitting param	eters are given at 2km	, 4km,
6km, and for the path-average.	_		. 2.	-	•
Reliability 0 th Order Fit	Float SDS	4	nlat*nlon*nh2*nthrsh	-	-
Reliability parameter for the 0th					
Reliability HB Fit	Float SDS	4	nlat*nlon*nh2*nthrsh	•	-
Reliability parameter for the HB					
Reliability 2A25 Fit	Float SDS	4	nlat*nlon*nh2*nthrsh	-	-
Reliability parameter for the SR					
rainMeanTH	Float SDS	4	nlat*nlon*nh3	0 – 3000	mm h ⁻¹
			ermined from the threshold meth		
-			method' using a single 'Q' thresho		1).
and the ment but		514611			-,-

3B31: Combined Rainfall

Tomporal Coverage	Start Date: 1997-12-01
Temporal Coverage	Stop Date: 2015-03-31
Caramanhia Caramana	Latitude: 40°S – 40°N
Geographic Coverage	Longitude: 180°W – 180°E
Temporal Resolution	Monthly
Horizontal Resolution	0.5° x 0.5°; nlat = 160, nlon = 720
Average File Size	≈ 37 MB compressed

3B31 Data Format Structure						
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit	
ECS Core Metadata	Char Attribute	10,000	-	-	-	
ECS core metadata						
PS Metadata	Char Attribute	10,000	-	-	-	
Product specific metada						
GridStructure	Char Attribute	5,000	-	-	-	
GridStructure gives the	•	geometry of the gric				
surfacePrecipTMI	Float SDS	4	nlat*nlon	0 – 3000	mm	
Surface rain from 2A12		า 0.5° x 0.5° box				
convectPrecipTMI	Float SDS	4	nlat*nlon	0 – 3000	mm	
Convective surface rain	from 2A12 accumul	ated in each 0.5° x 0				
rainWaterTMI	Float SDS	4	nlat*nlon*nlayer	0 – 10	g m ⁻³	
Monthly mean rain wat	er content from 2A1	.2 at each vertical la	yer in each 0.5° x 0.5°	, pox		
snowTMI	Float SDS	4	nlat*nlon*nlayer	0 – 10	g m ⁻³	
Monthly mean snow liq	uid content from 2A	12 at each vertical la	ayer in each 0.5° x 0.5	5° box		
graupelTMI	Float SDS	4	nlat*nlon*nlayer	0 – 10	g m ⁻³	
Monthly mean graupel	liquid content from	2A12 at each vertica	l layer in each 0.5° x	0.5° box		
npixTotalTMI	Integer SDS	4	nlat*nlon	1 – 10000	-	
The monthly number of	f pixels with pixelSta	tus equal to zero for	each grid. The major	effect of the pixelSt	atus requirement	
is to remove sea ice. np	ixTotalTMI is used to	compute the mont	hly means described	above.		
surfacePrecipCOMB	Float SDS	4	nlat*nlon	0 – 3000	mm	
Surface rain from 2B31	accumulated in each	า 0.5° x 0.5° box				
rainWaterCOMB	Float SDS	4	nlat*nlon*nlayer	0 – 10	g m ⁻³	
Rain water content at e	ach vertical layer fro	m 2B31 accumulate	d in each 0.5° x 0.5° l	оох		
snowCOMB	Float SDS	4	nlat*nlon*nlayer	0 – 10	g m ⁻³	
Snow water content at	each vertical layer fr	om 2B31 accumulat	ed in each 0.5° x 0.5°	box		
graupelCOMB	Float SDS	4	nlat*nlon*nlayer	0 – 10	g m-3	
Graupel water content	at each vertical layer	r from 2B31 accumu	lated in each 0.5° x 0	.5° box	-	
npixTotalCOMB	Integer SDS	4	nlat*nlon	1 – 10000	-	
The monthly number of	•	MB is used to compu	te the monthly mear	s described above.		
surfAdjRatio	Float SDS	4	nlat*nlon	-	-	
The ratio of 2B31 to 2A12 surface rainfall, calculated from the swath overlap region for each 0.5° x 0.5° box						
surfAdjRatiooverlap	Float SDS	4	nlat*nlon	-	-	
The ratio of 2B31 to 2A		alculated from the s		for each 0.5° x 0.5° h	OX	
3	January Community Co					

Notes:

- The "scale by" column was omitted because none of the 3B31 variables are scaled.
- The dimension *nlayer* represents the number of profiling layers per grid box. There are 28 vertical layers (nlayer) that span from 0.5 km to 10 km by 0.5 km and then from 10 km to 18 km by 1 km.

3A46: Special Sensor Microwave Imager Rainfall

Tomporal Coverage	Start Date: 1997-12-01
Temporal Coverage	Stop Date: 2015-03-31
Goographic Coverage	Latitude: 90°S – 90°N
Geographic Coverage	Longitude: 0° – 360°
Temporal Resolution	Monthly
Horizontal Resolution	1° x 1°; nlat = 80, nlon = 360
Average File Size	≈ 300 KB uncompressed

3A46 Data Format Structure							
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit		
ECS Core Metadata	Char Attribute	10,000	-	-	-		
ECS core metadata							
PS Metadata	Char Attribute	10,000	-	-	-		
Product specific metac	data						
GridStructure	Char Attribute	5,000	-	-	-		
GridStructure gives the	e specification of th	e geometry of the	grids.				
SSMIdata	Float SDS	4	180*360*2	$0 - 100 (1^{st} \text{ variable})$ $0 - 10^9 (2^{nd} \text{ variable})$	mm hr ⁻¹		
SSM/I data averaged or range is 0 to 100. The	-			s Precipitation Rate (mm O to one billion.	/hr); the		

Note that the grids in SSM/I data are different than the standard TSDIS grids in the following ways:

- the longitude dimension precedes the latitude dimension;
- the longitude index begins at the Greenwich meridian;
- the latitude index begins at the northernmost row;
- the latitude range is -90° to +90°;
- Missing data are given the value of -9999.

3B42: TRMM and Other Satellites Precipitation

- 10	Start Date: 1997-12-01		
Temporal Coverage	Stop Date: to present		
Coographic Coversor	Latitude: 50°S – 50°N		
Geographic Coverage	Longitude: 180°W – 180°E		
Temporal Resolution	Monthly		
Horizontal Resolution	0.25° x 0.25°; nlat = 400, nlon = 1440		
Average File Size	≈ 0.71 MB compressed, ≈ 11 MB uncompressed		

3B31 Data Format Structure							
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit		
ECS Core Metadata ECS core metadata	Char Attribute	10,000	-	-	-		
PS Metadata	Char Attribute	10,000	-	-	-		
Product specific metada	ta						
GridStructure	Char Attribute	5,000	-	-	-		
GridStructure gives the s	specification of the g	geometry of the grid	ds.				
precipitation	Float SDS	4	nlat*nlon	0 – 100	mm hr ⁻¹		
TRMM Multi-satellite pr	ecipitation analysis	(TMPA) precipitatio	n estimate				
relativeError	Float SDS	4	nlat*nlon	0 – 200	mm hr ⁻¹		
TMPA random error esti	mate						
satPrecipitationSource	Float SDS	4	nlat*nlon	-	-		
Flag to show source of d	Flag to show source of data in each box						
HQprecipitation	Float SDS	4	nlat*nlon	0 – 100	mm hr ⁻¹		
Pre-gauge-adjusted microwave precipitation estimate in each grid box.							
IRprecipitation	Float SDS	4	nlat*nlon	0 – 100	mm hr ⁻¹		
Pre-gauge-adjusted infrared precipitation estimate in each grid box.							
satObservationTime	Integer SDS	1	nlat*nlon	-90 – 90	minute		
Satellite observation time minus the time of the granule in each grid box.							

Notes:

• Missing data are given the value of -9999.9.

3B43: TRMM and Other Sources Precipitation

Tomporal Coverage	Start Date: 1997-12-01		
Temporal Coverage	Stop Date: to present		
Goographic Coverage	Latitude: 50°S – 50°N		
Geographic Coverage	Longitude: 180°W – 180°E		
Temporal Resolution	Monthly		
Horizontal Resolution	0.25° x 0.25°; nlat = 400, nlon = 1440		
Average File Sine	≈ 4.95 MB compressed, ≈ 4.95 MB		
Average File Size	uncompressed		

3B31 Data Format Structure						
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit	
ECS Core Metadata	Char Attribute	10,000	-	-	-	
ECS core metadata						
PS Metadata	Char Attribute	10,000	-	-	-	
Product specific metadata						
GridStructure	Char Attribute	5,000	-	-	-	
GridStructure gives the sp	ecification of the ge	ometry of the grids.				
precipitation	Float SDS	4	nlat*nlon	0 – 10	mm hr ⁻¹	
Satellite/gauge precipitation estimate						
relativeError	Float SDS	4	nlat*nlon	0 – 10	mm hr ⁻¹	
Satellite/gauge random error estimate						
gaugeRelativeWeighting	Integer SDS	1	nlat*nlon	0 – 100	percent	
Gauge relative weighting						

CSH: Convective and Stratiform Heating

Tomporal Coverage	Start Date: 1997-12-01			
Temporal Coverage	Stop Date: to present			
Congranhia Coverage	Latitude: 50°S – 50°N			
Geographic Coverage	Longitude: 180°W – 180°E			
Temporal Resolution	Monthly			
Horizontal Resolution	0.5° x 0.5°; nlat = 148, nlon = 720			
Average File Size	≈ 8.0 MB uncompressed			

3B31 Data Format Structure						
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit	
ECS Core Metadata	Char Attribute	10,000	-	-	-	
ECS core metadata						
PS Metadata	Char Attribute	10,000	-	-	-	
Product specific metadata						
GridStructure	Char Attribute	5,000	-	-	-	
GridStructure gives the specification of the geometry of the grids.						
LatentHeating	Float SDS	4	nlat*nlon*nlayer	-50 – 100	K hr ⁻¹	
Satellite/gauge precipitation estimate						

Note that the layers are the same as those described for 3B31.

4.0 Options for Reading the Data

Examples that show how to read TRMM data files are shown throughout section 4. For the sake of consistency, each example will use TRMM 3B42 3-hourly data from 24 August 2012 at 12 UTC. The name of this file is 3B42.20120824.12.7.HDF.Z and is described on page 55. This document will focus on the HQprecipitation variable. This tutorial assumes that the file is uncompressed, so its name ends in .HDF.

To uncompress the file on a UNIX-based system (including Mac OS X), use the following command: *uncompress 3B42.20120824.12.7.HDF.Z*.

Note that most of the gridded TRMM files do not include latitude or longitude metadata. The bounds for each product are specified in the preceding pages of this README as well as in the descriptions of each HDF file. TRMM data are stored as the center of grid boxes, so for example, 3B42 data that has latitude and longitude bounds of $50^{\circ}\text{S} - 50^{\circ}\text{N}$ and $180^{\circ}\text{W} - 180^{\circ}\text{E}$, respectively, can be represented by a latitude array from -49.875 to +49.875 and a longitude array of -179.875 to +179.875, both with a grid spacing of 0.25.

4.1 Command Line Utilities and Programs

4.1.1 GrADS

The Grid Analysis and Display System (GrADS) is well-suited for the visualization of TRMM data. However, since the TRMM files do not have embedded latitude and longitude data, they are not considered "self-describing". This means that latitude and longitude information must be specified in a separate file for GrADS to correctly interpret the data.

A data descriptor file must be created that tells GrADS information about the latitude and longitude data within the TRMM 3B42 data file. Below are the contents of a sample data descriptor file.

Note that the example below only includes the *precipitation* variable. Simply list other variables underneath (or instead of) the *precipitation* variable to read in different data.

DSET 3B42.20120824.12.7.HDF
UNDEF -9999.9
XDEF nlon 1440 LINEAR -179.875 0.25
YDEF nlat 400 LINEAR -49.875 0.25
TDEF nlat 1 LINEAR 12z24Aug2012 3hr
VARS 1
precipitation=>precip 0 3B42_Precipitation
ENDVARS

The following assumes that the contents above are saved in a file called *precip.ctl*. To open GrADS, type *grads* at the system prompt and then choose landscape or portrait mode.

At the GrADS prompt (ga->):

E set to 11

ga->xdfopen precip Scanning Descriptor File: precip SDF file 3B42.20120824.12.7.HDF is open as file 1 LON set to 0 360 LAT set to -50 49.75 LEV set to 0 0 Time values set: 2012:8:24:12 2012:8:24:12

The GrADS output should be the same as the text above in red.

To view an image of the precipitation data, type: ga-> d precip

To have GrADS shade the data instead of contouring, type: ga-> gxout shaded ga-> d precip

If you've already plotted the data with contours, you can clear before plotting the shaded data: ga-> clear graphics

There are numerous options for customizing plots in GrADS. For more information on using GrADS, or more information on Grads visit http://www.iges.org/grads/.

4.1.2 MATLAB

MATLAB can be used to load, manipulate, and view TRMM precipitation data. To load the *precipitation* variable from the aforementioned TRMM file into MATLAB type:

>> precip = permute(hdfread('3B42.20120824.12.7.HDF', 'precipitation'),[2 1]);

This will load the data into a matrix called *precip*. Missing data are represented by -9999.9, but MATLAB doesn't know that this value refers to missing data. The simplest way to replace the missing numeric values with MATLAB's not-a-number (NaN) values, is to type:

>> precip(precip < 0) = NaN;

It is okay to set all values less than zero to NaN since precipitation rate is a positive quantity. Users with the Mapping Toolbox can plot the precipitation data on a map using the following code:

```
figure;
axesm('MapProjection','eqdcylin','maplatlimit',[-50 50],'maplonlimit',[-180 180],...
  'ParallelLabel', 'on', 'PlabelMeridian', 'west', 'MeridianLabel', 'on', 'MLabelParallel', 'south',...
  'FontSize',6,'FontWeight','bold','PLineLocation',20,'MLineLocation',20);
latitudes = -49.875:0.25:49.875; % These must be explicitly defined since they are not in the file.
longitudes = -179.875:0.25:179.875;
[latGrid, lonGrid] = meshgrat(latitudes,longitudes);
geoshow(latGrid,lonGrid,double(precip),'DisplayType','texturemap');
caxis([0 5]);
% There are lots of color maps to choose from, run the command "doc colormap" to see them
colormap(flipud(hot(21)));
chandle = colorbar('Location', 'EastOutside', 'FontSize', 6, 'FontWeight', 'bold'); % This line places the colorbar
set(get(chandle,'ylabel'),'String','Rain Rate (mm/hr)','FontSize',10,'FontWeight','Bold'); % Set the colorbar's label
set(chandle,'YTick',0:5);
% You should plot the continent boundaries after the shading is done.
states = geoshape(shaperead('landareas', 'UseGeoCoords', true));
geoshow(states,'DefaultFaceColor','none','DefaultEdgeColor','k');
tightmap
title('24 August 2012 1200 UTC Rain Rate', 'FontSize', 8, 'FontWeight', 'bold');
print -dpng sampleTRMMmap.png
```

The code above should save a .png file that looks like Figure 1 below.

Figure 1. Sample map created in MATLAB showing TRMM 3B42 precipitation data.

4.1.3 Python

Like GrADS and MATLAB, Python can be used to read, manipulate, and plot data. Below is a script that can be used as-is within Python to read and plot the TRMM data. It was written to be as similar to the aforementioned MATLAB script as possible. Please note that you must have the free numpy, matplotlib, basemap, and pyhdf packages to use this script.

```
# This is a test script that reads and plots the TRMM 3B42 3-hourly data.
from mpl_toolkits.basemap import Basemap, cm
import matplotlib.pyplot as plt
import numpy as np
from pyhdf.SD import SD, SDC
dataset = SD('/path/to/3B42.20120824.12.7.HDF', SDC.READ)
precip = dataset.select('precipitation')
precip = precip[:]
precip = np.transpose(precip)
theLats = np.arange(-49.875,50,0.25)
theLons = np.arange(-179.875,180,0.25)
# Set all the missing values less than 0 to NaNs
np.putmask(precip,precip<0,np.nan)
# Plot the figure, define the geographic bounds
fig = plt.figure(dpi=300)
latcorners = ([-50,50])
loncorners = ([-180,180])
m = Basemap(projection='cyl',\
llcrnrlat=latcorners[0],urcrnrlat=latcorners[1],llcrnrlon=loncorners[0],urcrnrlon=loncorners[1])
# Draw coastlines, state and country boundaries, edge of map.
m.drawcoastlines()
m.drawstates()
m.drawcountries()
# Draw filled contours.
clevs = np.arange(0,5.01,0.5)
# Define the latitude and longitude data
x, y = np.float32(np.meshgrid(theLons, theLats))
cs = m.contourf(x,y,precip,clevs,cmap=cm.GMT drywet,latlon=True)
parallels = np.arange(-50.,51,25.)
m.drawparallels(parallels,labels=[True,False,True,False])
meridians = np.arange(-180.,180.,60.)
m.drawmeridians(meridians,labels=[False,False,False,True])
```

```
# Set the title and fonts
plt.title('24 August 2012 1200 UTC Rain Rate')
font = {'family' : 'normal', 'weight' : 'bold', 'size' : 6}
plt.rc('font', **font)

# Add colorbar
cbar = m.colorbar(cs,location='right',pad="5%")
cbar.set_label('mm/h')
plt.savefig('testTRMMmap.png',dpi=300)
```

The map shown below as Figure 2 results from the Python code above:

Figure 2. Sample map created in Python using TRMM 3B42 precipitation data.

4.1.4 hdp and ncdump

The HDF Toolkit ships with two binary executables, *hdp* and *ncdump*, that can be used to extract values from any HDF file. These are also available as standalone executable from the utilities folders found within each operating system at: ftp://ftp.hdfgroup.org/HDF/HDF_Current/bin.

ncdump can only read HDF files if your local copy of netCDF was originally compiled with HDF support.

To dump the entire file: hdp <filename> or ncdump <filename>

To get just the header information: hdp dumpsds -h <filename> or ncdump -h <filename>

A partial example of output from *hdp dumpsds -h 3B42.20120824.12.7.HDF* is given below. (The *ncdump -h* output is similar.)

```
File attributes:
      Attr0: Name = FileHeader
             Type = 8-bit signed char
             Count= 357
             Value = AlgorithmID=3B42;\012AlgorithmVersion=3B4
            2 7.0;\012FileName=3B42.20120824.12.7.HDF
            ;\012GenerationDateTime=2012-10-26T14:07:
            33.000Z;\012StartGranuleDateTime=2012-08-
            24T10:30:00.000Z;\012StopGranuleDateTime=
            2012-08-24T13:29:59.999Z;\012GranuleNumbe
            r=;\012NumberOfSwaths=0;\012NumberOfGrids
            =1;\012GranuleStart=;\012TimeInterval=3 H
            OUR;\012ProcessingSystem=PPS;\012ProductV
            ersion=7;\012MissingData=;\012
      Attr1: Name = FileInfo
             Type = 8-bit signed char
             Count= 253
             Value = DataFormatVersion=m;\012TKCodeBuildVersio
            n=1;\012MetadataVersion=m;\012FormatPacka
            ge=HDF Version 4.2 Release 4, January 25,
             2009;\012BlueprintFilename=TRMM.V7.3B42.
            blueprint.xml;\012BlueprintVersion=BV 13;
            \012TKIOVersion=1.6;\012MetadataStyle=PVL
            ;\012EndianType=LITTLE ENDIAN;\012
      Attr2: Name = GridHeader
             Type = 8-bit signed char
             Count= 231
             Value = BinMethod=ARITHMETIC_MEAN;\012Registratio
            n=CENTER;\012LatitudeResolution=0.25;\012
            LongitudeResolution=0.25;\012NorthBoundin
            gCoordinate=50;\012SouthBoundingCoordinat
            e=-50;\012EastBoundingCoordinate=180;\012
            WestBoundingCoordinate=-180;\012Origin=SO
            UTHWEST;\012
Variable Name = precipitation
      Index = 0
      Type= 32-bit floating point
      Ref. = 2
      Compression method = NONE
      Rank = 2
      Number of attributes = 1
      Dim0: Name=nlon
             Size = 1440
             Scale Type = number-type not set
             Number of attributes = 0
      Dim1: Name=nlat
             Size = 400
             Scale Type = number-type not set
             Number of attributes = 0
      Attr0: Name = units
             Type = 8-bit signed char
```

Count= 5 Value = mm/hr

... and so on ... This will list all of the variables in the same manner.

4.2 Tools/Programming

This section briefly explains some programs and websites that can be used for TRMM data access, manipulation, and viewing.

read_hdf

The read_hdf tool is a command-line utility developed by GES DISC. It allows users to browse the file structure and display data values if desired.

Command line syntax: read_hdf [-l] | [[-i | -d] [-a <output> | -b <base>.*.bin]] filename **Options/Arguments:**

[-i] -- run in interactive mode (default), or

[-I] -- list a tree of file objects, or

[-d] -- dump all HDF object types (no filtering)

[-a <output>] -- ASCII output file name (default is <filename>.txt)

[-b <base>] -- base binary output file name (default is <filename>)

creates two files per HDF object:

<base>.*.met for metadata, and <base>.*.bin for binary data

(default output to stdout)

filename -- name of the input HDF file

The source code is written in C language and can be obtained from GES DISC ftp server: ftp://disc1.gsfc.nasa.gov/software/aura/read_hdf/read_hdf.tgz

ncdump

The ncdump tool can be used as a simple browser for HDF data files, to display the dimension names and sizes; variable names, types, and shapes; attribute names and values; and optionally, the values of data for all variables or selected variables in a netCDF file. The most common use of ncdump is with the –h option, in which only the header information is displayed.

Command line syntax: ncdump [-c|-h] [-v ...] [[-b|-f] [c|f]] [-l len] [-n name] [-d n[,n]] filename Options/Arguments:

[-c] Coordinate variable data and header information

[-h] Header information only, no data

[-v var1[,...]] Data for variable(s) <var1>,... only data

[-f [c|f]] Full annotations for C or Fortran indices in data

[-I len] Line length maximum in data section (default 80)[-n name] Name for netCDF (default derived from file name)[-d n[,n]] Approximate floating-point values with less precision filename File name of input netCDF file

Note: the ncdump tool will only display variables whose ranks are great than 1. In other words, you will not see one dimensional vectors such as *satheight* using this tool. The ncdump program can be found in bin directory of the HDF installation area. Consult your local computer system administrator for the specifics.

hdp

The hdp utility is a HDF dumper developed by HDF group at NCSA.

Command line syntax: hdp [-H] command [command options] <filelist> -H Display usage information about the specified command. If no command is specified, -H lists all commands.

Commands:

list lists contents of files in <filelist> dumpsds displays data of SDSs in <filelist> dumpvd displays data of vdatas in <filelist>. dumpvg displays data of vgroups in <filelist>. dumprig displays data of RIs in <filelist>. dumpgr displays data of RIs in <filelist>.

Giovanni 4

TRMM data can be found on NASA's data visualization website called Giovanni at http://giovanni.gsfc.nasa.gov/giovanni/. Giovanni allows users to create maps, animations, hovmöller diagrams, vertical cross sections, and more using a number of TRMM products including the 3B42, 3B43, and 3A12 products.

HDFView

HDFView is a Java based graphical user interface created by the HDF Group, which can be used to browse TRMM HDF files. HDFView allows users to view all objects in the HDF file hierarchy, which is represented as a tree structure. It also allows users to browse the data within each variable.

HDFView can be downloaded at: ftp://ftp.hdfgroup.org/HDF5/hdf-java/ and its documentation can be found at: https://www.hdfgroup.org/products/java/hdfview/.

5.0 Data Services

You can familiarize yourself with the TRMM data by visiting the TRMM portal at: http://disc.sci.gsfc.nasa.gov/TRMM. Once you know which data you want, you can use the following services:

Mirador

Mirador can be used to locate and download all of the TRMM data products described in this README document. In addition to basic data availability, Mirador allows users to convert some products, such as the 3B42 products, into NetCDF format before downloading.

OPENDAP

Many TRMM products can be found on the GES DISC OPeNDAP website: http://disc2.nascom.nasa.gov/opendap/. OPeNDAP allows users to access and manipulate subsets of data without downloading the entire files.

Simple Subset Wizard (SSW)

Many of the TRMM products can be subset, and then downloaded, using the Simple Subset Wizard available here: http://disc.sci.gsfc.nasa.gov/SSW/#keywords=trmm.

If you need assistance or would like to report a problem:

Email: gsfc-help-disc@lists.nasa.gov

Voice: 301-614-5224 Fax: 301-614-5268

Address:

Goddard Earth Sciences Data and Information Services Center NASA Goddard Space Flight Center Code 610.2 Greenbelt, MD 20771 USA

6.0 More Information

The TRMM mission website is located at: http://pmm.nasa.gov/trmm.

Information on the TRMM instruments can be found at: http://pmm.nasa.gov/TRMM/trmm-instruments.

The GES DISC TRMM information portal can be found at: http://disc.sci.gsfc.nasa.gov/TRMM.

- J. Simpson, Adler, R.F., and North, G.R., 1988: A proposed tropical rainfall measuring mission (TRMM) satellite. *Bull. Amer. Meteor. Soc.*, **69**, 278–295. (Link)
- C. Kummerow, Barnes, W., Kozu, T., Shiue, J., Simpson, J, 1998: The tropical rainfall measuring mission (TRMM) sensor package. *J. Atmos. Oceanic Technol.*, **15**, 809–817. (Link)

7.0 Acknowledgements

The distribution of the TRMM dataset is funded by NASA's Science Mission Directorate.

Much of the information in this Readme document is from the Precipitation Measurement Mission (http://pmm.nasa.gov/) and the Precipitation Processing System (http://pps.gsfc.nasa.gov/) websites.